Heisenberg model on a space with negative curvature: Topological spin textures on the pseudosphere

Detalhes bibliográficos
Autor(a) principal: Belo, L. R. A.
Data de Publicação: 2007
Outros Autores: Oliveira Neto, N. M., Moura Melo, W. A., Pereira, A. R., Ercolessi, Elisa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.physleta.2007.01.044
http://www.locus.ufv.br/handle/123456789/22255
Resumo: Heisenberg-like spins lying on the pseudosphere (a 2-dimensional infinite space with constant negative curvature) cannot give rise to stable soliton solutions. Only fractional solutions can be stabilized on this surface provided that at least a hole is incorporated. We also address the issue of ‘in-plane’ vortices, in the XY regime. Interestingly, the energy of a single vortex no longer blows up as the excitation spreads to infinity. This yields a non-confining potential between a vortex and an antivortex at large distances so that the pair may dissociate at arbitrarily low temperature.
id UFV_d5b4ec036799abf04952e1ba6446cea4
oai_identifier_str oai:locus.ufv.br:123456789/22255
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Heisenberg model on a space with negative curvature: Topological spin textures on the pseudosphereHeisenberg modelNegative curvatureTopological spinHeisenberg-like spins lying on the pseudosphere (a 2-dimensional infinite space with constant negative curvature) cannot give rise to stable soliton solutions. Only fractional solutions can be stabilized on this surface provided that at least a hole is incorporated. We also address the issue of ‘in-plane’ vortices, in the XY regime. Interestingly, the energy of a single vortex no longer blows up as the excitation spreads to infinity. This yields a non-confining potential between a vortex and an antivortex at large distances so that the pair may dissociate at arbitrarily low temperature.Physics Letters A2018-10-16T10:45:21Z2018-10-16T10:45:21Z2007-06-11info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlepdfapplication/pdf0375-9601https://doi.org/10.1016/j.physleta.2007.01.044http://www.locus.ufv.br/handle/123456789/22255engVolume 365, Issues 5–6, Pages 463-468, June 2007Elsevier B. V.info:eu-repo/semantics/openAccessBelo, L. R. A.Oliveira Neto, N. M.Moura Melo, W. A.Pereira, A. R.Ercolessi, Elisareponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFV2024-07-12T06:27:23Zoai:locus.ufv.br:123456789/22255Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452024-07-12T06:27:23LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.none.fl_str_mv Heisenberg model on a space with negative curvature: Topological spin textures on the pseudosphere
title Heisenberg model on a space with negative curvature: Topological spin textures on the pseudosphere
spellingShingle Heisenberg model on a space with negative curvature: Topological spin textures on the pseudosphere
Belo, L. R. A.
Heisenberg model
Negative curvature
Topological spin
title_short Heisenberg model on a space with negative curvature: Topological spin textures on the pseudosphere
title_full Heisenberg model on a space with negative curvature: Topological spin textures on the pseudosphere
title_fullStr Heisenberg model on a space with negative curvature: Topological spin textures on the pseudosphere
title_full_unstemmed Heisenberg model on a space with negative curvature: Topological spin textures on the pseudosphere
title_sort Heisenberg model on a space with negative curvature: Topological spin textures on the pseudosphere
author Belo, L. R. A.
author_facet Belo, L. R. A.
Oliveira Neto, N. M.
Moura Melo, W. A.
Pereira, A. R.
Ercolessi, Elisa
author_role author
author2 Oliveira Neto, N. M.
Moura Melo, W. A.
Pereira, A. R.
Ercolessi, Elisa
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Belo, L. R. A.
Oliveira Neto, N. M.
Moura Melo, W. A.
Pereira, A. R.
Ercolessi, Elisa
dc.subject.por.fl_str_mv Heisenberg model
Negative curvature
Topological spin
topic Heisenberg model
Negative curvature
Topological spin
description Heisenberg-like spins lying on the pseudosphere (a 2-dimensional infinite space with constant negative curvature) cannot give rise to stable soliton solutions. Only fractional solutions can be stabilized on this surface provided that at least a hole is incorporated. We also address the issue of ‘in-plane’ vortices, in the XY regime. Interestingly, the energy of a single vortex no longer blows up as the excitation spreads to infinity. This yields a non-confining potential between a vortex and an antivortex at large distances so that the pair may dissociate at arbitrarily low temperature.
publishDate 2007
dc.date.none.fl_str_mv 2007-06-11
2018-10-16T10:45:21Z
2018-10-16T10:45:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 0375-9601
https://doi.org/10.1016/j.physleta.2007.01.044
http://www.locus.ufv.br/handle/123456789/22255
identifier_str_mv 0375-9601
url https://doi.org/10.1016/j.physleta.2007.01.044
http://www.locus.ufv.br/handle/123456789/22255
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Volume 365, Issues 5–6, Pages 463-468, June 2007
dc.rights.driver.fl_str_mv Elsevier B. V.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier B. V.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv pdf
application/pdf
dc.publisher.none.fl_str_mv Physics Letters A
publisher.none.fl_str_mv Physics Letters A
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1817559838725505024