New insights into genomic selection through population-based non-parametric prediction methods

Detalhes bibliográficos
Autor(a) principal: Lima, Leísa Pires
Data de Publicação: 2019
Outros Autores: Azevedo, Camila Ferreira, Resende, Marcos Deon Vilela de, Silva, Fabyano Fonseca e, Suela, Matheus Massariol, Nascimento, Moysés, Viana, José Marcelo Soriano
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1590/1678-992x-2017-0351
http://locus.ufv.br//handle/123456789/26405
Resumo: Genome-wide selection (GWS) is based on a large number of markers widely distributed throughout the genome. Genome-wide selection provides for the estimation of the effect of each molecular marker on the phenotype, thereby allowing for the capture of all genes affecting the quantitative traits of interest. The main statistical tools applied to GWS are based on random regression or dimensionality reduction methods. In this study a new non-parametric method, called Delta-p was proposed, which was then compared to the Genomic Best Linear Unbiased Predictor (G-BLUP) method. Furthermore, a new selection index combining the genetic values obtained by the G-BLUP and Delta-p, named Delta-p/G-BLUP methods, was proposed. The efficiency of the proposed methods was evaluated through both simulation and real studies. The simulated data consisted of eight scenarios comprising a combination of two levels of heritability, two genetic architectures and two dominance status (absence and complete dominance). Each scenario was simulated ten times. All methods were applied to a real dataset of Asian rice (Oryza sativa) aiming to increase the efficiency of a current breeding program. The methods were compared as regards accuracy of prediction (simulation data) or predictive ability (real dataset), bias and recovery of the true genomic heritability. The results indicated that the proposed Delta-p/G-BLUP index outperformed the other methods in both prediction accuracy and predictive ability.
id UFV_3dac3bb6d129fafad40cd088653e8b1b
oai_identifier_str oai:locus.ufv.br:123456789/26405
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Lima, Leísa PiresAzevedo, Camila FerreiraResende, Marcos Deon Vilela deSilva, Fabyano Fonseca eSuela, Matheus MassariolNascimento, MoysésViana, José Marcelo Soriano2019-07-31T12:03:50Z2019-07-31T12:03:50Z2019-071678-992Xhttp://dx.doi.org/10.1590/1678-992x-2017-0351http://locus.ufv.br//handle/123456789/26405Genome-wide selection (GWS) is based on a large number of markers widely distributed throughout the genome. Genome-wide selection provides for the estimation of the effect of each molecular marker on the phenotype, thereby allowing for the capture of all genes affecting the quantitative traits of interest. The main statistical tools applied to GWS are based on random regression or dimensionality reduction methods. In this study a new non-parametric method, called Delta-p was proposed, which was then compared to the Genomic Best Linear Unbiased Predictor (G-BLUP) method. Furthermore, a new selection index combining the genetic values obtained by the G-BLUP and Delta-p, named Delta-p/G-BLUP methods, was proposed. The efficiency of the proposed methods was evaluated through both simulation and real studies. The simulated data consisted of eight scenarios comprising a combination of two levels of heritability, two genetic architectures and two dominance status (absence and complete dominance). Each scenario was simulated ten times. All methods were applied to a real dataset of Asian rice (Oryza sativa) aiming to increase the efficiency of a current breeding program. The methods were compared as regards accuracy of prediction (simulation data) or predictive ability (real dataset), bias and recovery of the true genomic heritability. The results indicated that the proposed Delta-p/G-BLUP index outperformed the other methods in both prediction accuracy and predictive ability.engScientia Agricolav. 76, n. 4, p. 290- 298, jul.- aug. 2019Genomic predictionSelection indexGenetic gainAsian riceNew insights into genomic selection through population-based non-parametric prediction methodsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf162519https://locus.ufv.br//bitstream/123456789/26405/1/artigo.pdff83d7c2fe385b450554b2e95c047e3e9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/26405/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/264052019-07-31 11:38:12.107oai:locus.ufv.br:123456789/26405Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452019-07-31T14:38:12LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv New insights into genomic selection through population-based non-parametric prediction methods
title New insights into genomic selection through population-based non-parametric prediction methods
spellingShingle New insights into genomic selection through population-based non-parametric prediction methods
Lima, Leísa Pires
Genomic prediction
Selection index
Genetic gain
Asian rice
title_short New insights into genomic selection through population-based non-parametric prediction methods
title_full New insights into genomic selection through population-based non-parametric prediction methods
title_fullStr New insights into genomic selection through population-based non-parametric prediction methods
title_full_unstemmed New insights into genomic selection through population-based non-parametric prediction methods
title_sort New insights into genomic selection through population-based non-parametric prediction methods
author Lima, Leísa Pires
author_facet Lima, Leísa Pires
Azevedo, Camila Ferreira
Resende, Marcos Deon Vilela de
Silva, Fabyano Fonseca e
Suela, Matheus Massariol
Nascimento, Moysés
Viana, José Marcelo Soriano
author_role author
author2 Azevedo, Camila Ferreira
Resende, Marcos Deon Vilela de
Silva, Fabyano Fonseca e
Suela, Matheus Massariol
Nascimento, Moysés
Viana, José Marcelo Soriano
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Lima, Leísa Pires
Azevedo, Camila Ferreira
Resende, Marcos Deon Vilela de
Silva, Fabyano Fonseca e
Suela, Matheus Massariol
Nascimento, Moysés
Viana, José Marcelo Soriano
dc.subject.pt-BR.fl_str_mv Genomic prediction
Selection index
Genetic gain
Asian rice
topic Genomic prediction
Selection index
Genetic gain
Asian rice
description Genome-wide selection (GWS) is based on a large number of markers widely distributed throughout the genome. Genome-wide selection provides for the estimation of the effect of each molecular marker on the phenotype, thereby allowing for the capture of all genes affecting the quantitative traits of interest. The main statistical tools applied to GWS are based on random regression or dimensionality reduction methods. In this study a new non-parametric method, called Delta-p was proposed, which was then compared to the Genomic Best Linear Unbiased Predictor (G-BLUP) method. Furthermore, a new selection index combining the genetic values obtained by the G-BLUP and Delta-p, named Delta-p/G-BLUP methods, was proposed. The efficiency of the proposed methods was evaluated through both simulation and real studies. The simulated data consisted of eight scenarios comprising a combination of two levels of heritability, two genetic architectures and two dominance status (absence and complete dominance). Each scenario was simulated ten times. All methods were applied to a real dataset of Asian rice (Oryza sativa) aiming to increase the efficiency of a current breeding program. The methods were compared as regards accuracy of prediction (simulation data) or predictive ability (real dataset), bias and recovery of the true genomic heritability. The results indicated that the proposed Delta-p/G-BLUP index outperformed the other methods in both prediction accuracy and predictive ability.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-07-31T12:03:50Z
dc.date.available.fl_str_mv 2019-07-31T12:03:50Z
dc.date.issued.fl_str_mv 2019-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1590/1678-992x-2017-0351
http://locus.ufv.br//handle/123456789/26405
dc.identifier.issn.none.fl_str_mv 1678-992X
identifier_str_mv 1678-992X
url http://dx.doi.org/10.1590/1678-992x-2017-0351
http://locus.ufv.br//handle/123456789/26405
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 76, n. 4, p. 290- 298, jul.- aug. 2019
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Scientia Agricola
publisher.none.fl_str_mv Scientia Agricola
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/26405/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/26405/2/license.txt
bitstream.checksum.fl_str_mv f83d7c2fe385b450554b2e95c047e3e9
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212870032097280