Epidemic processes and diffusion on networks: analytical and computational aproaches

Detalhes bibliográficos
Autor(a) principal: Mata, Angélica Sousa da
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://www.locus.ufv.br/handle/123456789/6343
Resumo: Uma área de crescente interesse na Física Estatística é o estudo de processos dinâmicos em redes complexas. Neste contexto, o objetivo principal dessa tese é investigar o comportamento de processos epidêmicos em redes heterogêneas. Com esse intuito, aprimoramos as teorias de campo médio quenched e heterogênea através de aproximações de pares nas quais a correlação dinâmica entre vértices vizinhos é explicitamente levada em consideração. Essas abordagens nos permitem determinar, com maior precisão, os limiares epidêmicos do modelo suscetível-infectado-suscetível (SIS), e também as relações de escala dos expoentes críticos associados à transição de fase para o estado absorvente no processo de contato (CP). Também investigamos a dinâmica do modelo SIS em redes aleatórias com distribuição de conectividade em lei de potência (P (k) ∼ k −γ ), com expoente γ > 3, uma vez que a existência ou ausência de um limiar finito envolvendo uma transição para a fase endêmica tem sido alvo de muitos estudos recentemente. Encontramos que o modelo pode exibir múltiplas transições envolvendo epidemias localizadas. Nossa análise numérica também indica que a transição para uma fase endêmica pode ocorrer num limiar finito. Nossos resultados mostram que teorias de campo médio a princípio contraditórias, na verdade são complementares porque elas descrevem diferentes limiares epidêmicos que podem aparecer concomitantemente em uma única rede. Finalmente, nós também investigamos processos de difusão em redes temporais através do modelo de caminhada aleatória. Além de ser estudada numericamente via simulações, tal dinâmica também foi estudada teoricamente através do seu mapeamento no modelo de armadilhas de Bouchaud. Nesse estudo foram encontradas evidências do comportamento de aging na relaxação de tal processo dinâmico.
id UFV_6715fc0727c9ca1882cc095c4734cc5c
oai_identifier_str oai:locus.ufv.br:123456789/6343
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Martins, Marcelo LobatoPastor-Satorras, RomualdoMata, Angélica Sousa dahttp://lattes.cnpq.br/5760506292076803Ferreira Júnior, Silvio da Costa2015-10-20T15:11:58Z2015-10-20T15:11:58Z2015-02-25MATA, Angélica Sousa da. Epidemic processes and diffusion on networks: analytical and computational aproaches. 2015. 120f. Tese (Doutorado em Física) - Universidade Federal de Viçosa, Viçosa. 2015.http://www.locus.ufv.br/handle/123456789/6343Uma área de crescente interesse na Física Estatística é o estudo de processos dinâmicos em redes complexas. Neste contexto, o objetivo principal dessa tese é investigar o comportamento de processos epidêmicos em redes heterogêneas. Com esse intuito, aprimoramos as teorias de campo médio quenched e heterogênea através de aproximações de pares nas quais a correlação dinâmica entre vértices vizinhos é explicitamente levada em consideração. Essas abordagens nos permitem determinar, com maior precisão, os limiares epidêmicos do modelo suscetível-infectado-suscetível (SIS), e também as relações de escala dos expoentes críticos associados à transição de fase para o estado absorvente no processo de contato (CP). Também investigamos a dinâmica do modelo SIS em redes aleatórias com distribuição de conectividade em lei de potência (P (k) ∼ k −γ ), com expoente γ > 3, uma vez que a existência ou ausência de um limiar finito envolvendo uma transição para a fase endêmica tem sido alvo de muitos estudos recentemente. Encontramos que o modelo pode exibir múltiplas transições envolvendo epidemias localizadas. Nossa análise numérica também indica que a transição para uma fase endêmica pode ocorrer num limiar finito. Nossos resultados mostram que teorias de campo médio a princípio contraditórias, na verdade são complementares porque elas descrevem diferentes limiares epidêmicos que podem aparecer concomitantemente em uma única rede. Finalmente, nós também investigamos processos de difusão em redes temporais através do modelo de caminhada aleatória. Além de ser estudada numericamente via simulações, tal dinâmica também foi estudada teoricamente através do seu mapeamento no modelo de armadilhas de Bouchaud. Nesse estudo foram encontradas evidências do comportamento de aging na relaxação de tal processo dinâmico.A field of outstanding interest in Statistical Physics is the investigation of dynamical processes on complex networks. This thesis is devoted to explore the behavior of epidemic dynamics running on heterogeneous networks. We improved analytical approaches - quenched and heterogeneous mean-field theories - by means of pair approximations, which explicitly take into account dynam- ical correlations between connected vertices. These approaches yield more accurate predictions of the epidemic thresholds in the susceptible-infected-susceptible (SIS) model and the critical expo- nents associated to the absorbing state phase transition of the contact process (CP) obtained through finite-size scaling. These approaches can be applied to dynamical processes on networks in gen- eral providing a profitable strategy to analytically assess and fine-tune theoretical corrections. We also investigated the SIS dynamics on random networks having a power law degree distribution (P (k) ∼ k −γ ), with exponent γ > 3, since the existence or absence of a finite threshold involving an endemic phase has been target of a recent and intense investigation. We found that this model on a single network can exhibit multiple transitions involving localized epidemics and our numerical analysis indicates that the transition to the endemic state occurs at a finite threshold. Our analy- sis points out that competing mean-field theories are, in fact, complementary since they describe different epidemic thresholds which can concomitantly emerge in a single network. Finally, we also investigated the diffusion processes on temporal networks by means of a random walk. We analyzed this dynamic theoretically by means of a mapping to Bouchaud’s trap model and using numerical simulations. We found evidence of aging behavior in the random walk relaxation.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorengUniversidade Federal de ViçosaFísica estatísticaEpidemiasTransformação de fase (Física estatística)Teoria de campos (Física)Física da Matéria CondensadaEpidemic processes and diffusion on networks: analytical and computational aproachesProcessos epidêmicos e difusão em redes: abordagens analítica e computacionalinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal de ViçosaDepartamento de FísicaDoutor em FísicaViçosa - MG2015-02-25Doutoradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf2664098https://locus.ufv.br//bitstream/123456789/6343/1/texto%20completo.pdf5ca2abf4ee783a4e11a813f4f88a183fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/6343/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTtexto completo.pdf.txttexto completo.pdf.txtExtracted texttext/plain256129https://locus.ufv.br//bitstream/123456789/6343/3/texto%20completo.pdf.txtdb2502c8bbf1554afea147f9c4addec0MD53THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3757https://locus.ufv.br//bitstream/123456789/6343/4/texto%20completo.pdf.jpg9fd201fbc784dd6f5aef763eae373f8fMD54123456789/63432016-04-12 23:04:50.99oai:locus.ufv.br:123456789/6343Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452016-04-13T02:04:50LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Epidemic processes and diffusion on networks: analytical and computational aproaches
dc.title.pt-BR.fl_str_mv Processos epidêmicos e difusão em redes: abordagens analítica e computacional
title Epidemic processes and diffusion on networks: analytical and computational aproaches
spellingShingle Epidemic processes and diffusion on networks: analytical and computational aproaches
Mata, Angélica Sousa da
Física estatística
Epidemias
Transformação de fase (Física estatística)
Teoria de campos (Física)
Física da Matéria Condensada
title_short Epidemic processes and diffusion on networks: analytical and computational aproaches
title_full Epidemic processes and diffusion on networks: analytical and computational aproaches
title_fullStr Epidemic processes and diffusion on networks: analytical and computational aproaches
title_full_unstemmed Epidemic processes and diffusion on networks: analytical and computational aproaches
title_sort Epidemic processes and diffusion on networks: analytical and computational aproaches
author Mata, Angélica Sousa da
author_facet Mata, Angélica Sousa da
author_role author
dc.contributor.authorLattes.pt-BR.fl_str_mv http://lattes.cnpq.br/5760506292076803
dc.contributor.none.fl_str_mv Martins, Marcelo Lobato
Pastor-Satorras, Romualdo
dc.contributor.author.fl_str_mv Mata, Angélica Sousa da
dc.contributor.advisor1.fl_str_mv Ferreira Júnior, Silvio da Costa
contributor_str_mv Ferreira Júnior, Silvio da Costa
dc.subject.pt-BR.fl_str_mv Física estatística
Epidemias
Transformação de fase (Física estatística)
Teoria de campos (Física)
topic Física estatística
Epidemias
Transformação de fase (Física estatística)
Teoria de campos (Física)
Física da Matéria Condensada
dc.subject.cnpq.fl_str_mv Física da Matéria Condensada
description Uma área de crescente interesse na Física Estatística é o estudo de processos dinâmicos em redes complexas. Neste contexto, o objetivo principal dessa tese é investigar o comportamento de processos epidêmicos em redes heterogêneas. Com esse intuito, aprimoramos as teorias de campo médio quenched e heterogênea através de aproximações de pares nas quais a correlação dinâmica entre vértices vizinhos é explicitamente levada em consideração. Essas abordagens nos permitem determinar, com maior precisão, os limiares epidêmicos do modelo suscetível-infectado-suscetível (SIS), e também as relações de escala dos expoentes críticos associados à transição de fase para o estado absorvente no processo de contato (CP). Também investigamos a dinâmica do modelo SIS em redes aleatórias com distribuição de conectividade em lei de potência (P (k) ∼ k −γ ), com expoente γ > 3, uma vez que a existência ou ausência de um limiar finito envolvendo uma transição para a fase endêmica tem sido alvo de muitos estudos recentemente. Encontramos que o modelo pode exibir múltiplas transições envolvendo epidemias localizadas. Nossa análise numérica também indica que a transição para uma fase endêmica pode ocorrer num limiar finito. Nossos resultados mostram que teorias de campo médio a princípio contraditórias, na verdade são complementares porque elas descrevem diferentes limiares epidêmicos que podem aparecer concomitantemente em uma única rede. Finalmente, nós também investigamos processos de difusão em redes temporais através do modelo de caminhada aleatória. Além de ser estudada numericamente via simulações, tal dinâmica também foi estudada teoricamente através do seu mapeamento no modelo de armadilhas de Bouchaud. Nesse estudo foram encontradas evidências do comportamento de aging na relaxação de tal processo dinâmico.
publishDate 2015
dc.date.accessioned.fl_str_mv 2015-10-20T15:11:58Z
dc.date.available.fl_str_mv 2015-10-20T15:11:58Z
dc.date.issued.fl_str_mv 2015-02-25
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MATA, Angélica Sousa da. Epidemic processes and diffusion on networks: analytical and computational aproaches. 2015. 120f. Tese (Doutorado em Física) - Universidade Federal de Viçosa, Viçosa. 2015.
dc.identifier.uri.fl_str_mv http://www.locus.ufv.br/handle/123456789/6343
identifier_str_mv MATA, Angélica Sousa da. Epidemic processes and diffusion on networks: analytical and computational aproaches. 2015. 120f. Tese (Doutorado em Física) - Universidade Federal de Viçosa, Viçosa. 2015.
url http://www.locus.ufv.br/handle/123456789/6343
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Viçosa
publisher.none.fl_str_mv Universidade Federal de Viçosa
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/6343/1/texto%20completo.pdf
https://locus.ufv.br//bitstream/123456789/6343/2/license.txt
https://locus.ufv.br//bitstream/123456789/6343/3/texto%20completo.pdf.txt
https://locus.ufv.br//bitstream/123456789/6343/4/texto%20completo.pdf.jpg
bitstream.checksum.fl_str_mv 5ca2abf4ee783a4e11a813f4f88a183f
8a4605be74aa9ea9d79846c1fba20a33
db2502c8bbf1554afea147f9c4addec0
9fd201fbc784dd6f5aef763eae373f8f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213130557095936