In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese

Detalhes bibliográficos
Autor(a) principal: Todorov, Svetoslav Dimitrov
Data de Publicação: 2017
Outros Autores: Casarotti, Sabrina Neves, Carneiro, Bruno Moreira, Nero, Luis Augusto, Rahal, Paula, Penna, Ana Lúcia Barretto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.1007/s13213-017-1258-2
http://www.locus.ufv.br/handle/123456789/22043
Resumo: The aim of this study was to evaluate the safety and probiotic potential characteristics of ten Lactobacillus spp. strains (Lactobacillus fermentum SJRP30, Lactobacillus casei SJRP37, SJRP66, SJRP141, SJRP145, SJRP146, and SJRP169, and Lactobacillus delbrueckii subsp. bulgaricus SJRP50, SJRP76, and SJRP149) that had previously been isolated from water buffalo mozzarella cheese. The safety of the strains was analyzed based on mucin degradation, hemolytic activity, resistance to antibiotics and the presence of genes encoding virulence factors. The in vitro tests concerning probiotic potential included survival under simulated gastrointestinal (GI) tract conditions, intestinal epithelial cell adhesion, the presence of genes encoding adhesion, aggregation and colonization factors, antimicrobial activity, and the production of the β-galactosidase enzyme. Although all strains presented resistance to several antibiotics, the resistance was limited to antibiotics to which the strains had intrinsic resistance. Furthermore, the strains presented a limited spread of genes encoding virulence factors and resistance to antibiotics, and none of the strains presented hemolytic or mucin degradation activity. The L. delbrueckii subsp. bulgaricus strains showed the lowest survival rate after exposure to simulated GI tract conditions, whereas all of the L. casei and L. fermentum strains showed good survivability. None of the tested lactobacilli strains presented bile salt hydrolase (BSH) activity, and only L. casei SJRP145 did not produce the β-galactosidase enzyme. The strains showed varied levels of adhesion to Caco-2 cells. None of the cell-free supernatants inhibited the growth of pathogenic target microorganisms. Overall, L. fermentum SJRP30 and L. casei SJRP145 and SJRP146 were revealed to be safe and to possess similar or superior probiotic characteristics compared to the reference strain L. rhamnosus GG (ATCC 53103).
id UFV_7aaf20ed30ddadecd64282feaac3d465
oai_identifier_str oai:locus.ufv.br:123456789/22043
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Todorov, Svetoslav DimitrovCasarotti, Sabrina NevesCarneiro, Bruno MoreiraNero, Luis AugustoRahal, PaulaPenna, Ana Lúcia Barretto2018-09-27T01:05:10Z2018-09-27T01:05:10Z2017-02-2818692044http://dx.doi.org/10.1007/s13213-017-1258-2http://www.locus.ufv.br/handle/123456789/22043The aim of this study was to evaluate the safety and probiotic potential characteristics of ten Lactobacillus spp. strains (Lactobacillus fermentum SJRP30, Lactobacillus casei SJRP37, SJRP66, SJRP141, SJRP145, SJRP146, and SJRP169, and Lactobacillus delbrueckii subsp. bulgaricus SJRP50, SJRP76, and SJRP149) that had previously been isolated from water buffalo mozzarella cheese. The safety of the strains was analyzed based on mucin degradation, hemolytic activity, resistance to antibiotics and the presence of genes encoding virulence factors. The in vitro tests concerning probiotic potential included survival under simulated gastrointestinal (GI) tract conditions, intestinal epithelial cell adhesion, the presence of genes encoding adhesion, aggregation and colonization factors, antimicrobial activity, and the production of the β-galactosidase enzyme. Although all strains presented resistance to several antibiotics, the resistance was limited to antibiotics to which the strains had intrinsic resistance. Furthermore, the strains presented a limited spread of genes encoding virulence factors and resistance to antibiotics, and none of the strains presented hemolytic or mucin degradation activity. The L. delbrueckii subsp. bulgaricus strains showed the lowest survival rate after exposure to simulated GI tract conditions, whereas all of the L. casei and L. fermentum strains showed good survivability. None of the tested lactobacilli strains presented bile salt hydrolase (BSH) activity, and only L. casei SJRP145 did not produce the β-galactosidase enzyme. The strains showed varied levels of adhesion to Caco-2 cells. None of the cell-free supernatants inhibited the growth of pathogenic target microorganisms. Overall, L. fermentum SJRP30 and L. casei SJRP145 and SJRP146 were revealed to be safe and to possess similar or superior probiotic characteristics compared to the reference strain L. rhamnosus GG (ATCC 53103).engAnnals of Microbiologyv. 67, n. 4, p. 289– 301, abr. 2017Springer Nature Switzerland AG.info:eu-repo/semantics/openAccessLactic acid bacteriaDairySafetyAntibiotic resistanceBeneficial propertiesGastrointestinal tract survivalIn vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheeseinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf706587https://locus.ufv.br//bitstream/123456789/22043/1/artigo.pdfb9403981ceb01cbb2020d5fac1c07bfaMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/22043/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5069https://locus.ufv.br//bitstream/123456789/22043/3/artigo.pdf.jpg2141599a7cc280bcce1dea54c8cc1f64MD53123456789/220432018-09-26 23:00:53.699oai:locus.ufv.br:123456789/22043Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-09-27T02:00:53LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese
title In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese
spellingShingle In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese
Todorov, Svetoslav Dimitrov
Lactic acid bacteria
Dairy
Safety
Antibiotic resistance
Beneficial properties
Gastrointestinal tract survival
title_short In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese
title_full In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese
title_fullStr In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese
title_full_unstemmed In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese
title_sort In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese
author Todorov, Svetoslav Dimitrov
author_facet Todorov, Svetoslav Dimitrov
Casarotti, Sabrina Neves
Carneiro, Bruno Moreira
Nero, Luis Augusto
Rahal, Paula
Penna, Ana Lúcia Barretto
author_role author
author2 Casarotti, Sabrina Neves
Carneiro, Bruno Moreira
Nero, Luis Augusto
Rahal, Paula
Penna, Ana Lúcia Barretto
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Todorov, Svetoslav Dimitrov
Casarotti, Sabrina Neves
Carneiro, Bruno Moreira
Nero, Luis Augusto
Rahal, Paula
Penna, Ana Lúcia Barretto
dc.subject.pt-BR.fl_str_mv Lactic acid bacteria
Dairy
Safety
Antibiotic resistance
Beneficial properties
Gastrointestinal tract survival
topic Lactic acid bacteria
Dairy
Safety
Antibiotic resistance
Beneficial properties
Gastrointestinal tract survival
description The aim of this study was to evaluate the safety and probiotic potential characteristics of ten Lactobacillus spp. strains (Lactobacillus fermentum SJRP30, Lactobacillus casei SJRP37, SJRP66, SJRP141, SJRP145, SJRP146, and SJRP169, and Lactobacillus delbrueckii subsp. bulgaricus SJRP50, SJRP76, and SJRP149) that had previously been isolated from water buffalo mozzarella cheese. The safety of the strains was analyzed based on mucin degradation, hemolytic activity, resistance to antibiotics and the presence of genes encoding virulence factors. The in vitro tests concerning probiotic potential included survival under simulated gastrointestinal (GI) tract conditions, intestinal epithelial cell adhesion, the presence of genes encoding adhesion, aggregation and colonization factors, antimicrobial activity, and the production of the β-galactosidase enzyme. Although all strains presented resistance to several antibiotics, the resistance was limited to antibiotics to which the strains had intrinsic resistance. Furthermore, the strains presented a limited spread of genes encoding virulence factors and resistance to antibiotics, and none of the strains presented hemolytic or mucin degradation activity. The L. delbrueckii subsp. bulgaricus strains showed the lowest survival rate after exposure to simulated GI tract conditions, whereas all of the L. casei and L. fermentum strains showed good survivability. None of the tested lactobacilli strains presented bile salt hydrolase (BSH) activity, and only L. casei SJRP145 did not produce the β-galactosidase enzyme. The strains showed varied levels of adhesion to Caco-2 cells. None of the cell-free supernatants inhibited the growth of pathogenic target microorganisms. Overall, L. fermentum SJRP30 and L. casei SJRP145 and SJRP146 were revealed to be safe and to possess similar or superior probiotic characteristics compared to the reference strain L. rhamnosus GG (ATCC 53103).
publishDate 2017
dc.date.issued.fl_str_mv 2017-02-28
dc.date.accessioned.fl_str_mv 2018-09-27T01:05:10Z
dc.date.available.fl_str_mv 2018-09-27T01:05:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s13213-017-1258-2
http://www.locus.ufv.br/handle/123456789/22043
dc.identifier.issn.none.fl_str_mv 18692044
identifier_str_mv 18692044
url http://dx.doi.org/10.1007/s13213-017-1258-2
http://www.locus.ufv.br/handle/123456789/22043
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 67, n. 4, p. 289– 301, abr. 2017
dc.rights.driver.fl_str_mv Springer Nature Switzerland AG.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Springer Nature Switzerland AG.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Annals of Microbiology
publisher.none.fl_str_mv Annals of Microbiology
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/22043/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/22043/2/license.txt
https://locus.ufv.br//bitstream/123456789/22043/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv b9403981ceb01cbb2020d5fac1c07bfa
8a4605be74aa9ea9d79846c1fba20a33
2141599a7cc280bcce1dea54c8cc1f64
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212974338146304