Critical points of higher order for the normal map of immersions in R^ d

Detalhes bibliográficos
Autor(a) principal: Monera, M. G.
Data de Publicação: 2012
Outros Autores: Montesinos-Amilibia, A., Moraes, S. M., Sanabria-Codesal, E.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1016/j.topol.2011.09.029
http://www.locus.ufv.br/handle/123456789/21909
Resumo: We study the critical points of the normal map ν : N M → R k + n , where M is an immersed k-dimensional submanifold of R k + n , N M is the normal bundle of M and ν ( m , u ) = m + u if u ∈ N m M. Usually, the image of these critical points is called the focal set. However, in that set there is a subset where the focusing is highest, as happens in the case of curves in R 3 with the curve of the centers of spheres with contact of third order with the curve. We give a definition of r-critical points of a smooth map between manifolds, and apply it to study the 2 and 3-critical points of the normal map in general and the 2-critical points for the case k = n = 2 in detail. In the later case we analyze the relation with the strong principal directions of Montaldi (1986) [2].
id UFV_88148b618e17cbb32a8fca30f3e25057
oai_identifier_str oai:locus.ufv.br:123456789/21909
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Monera, M. G.Montesinos-Amilibia, A.Moraes, S. M.Sanabria-Codesal, E.2018-09-21T11:43:36Z2018-09-21T11:43:36Z2012-02-0101668641https://doi.org/10.1016/j.topol.2011.09.029http://www.locus.ufv.br/handle/123456789/21909We study the critical points of the normal map ν : N M → R k + n , where M is an immersed k-dimensional submanifold of R k + n , N M is the normal bundle of M and ν ( m , u ) = m + u if u ∈ N m M. Usually, the image of these critical points is called the focal set. However, in that set there is a subset where the focusing is highest, as happens in the case of curves in R 3 with the curve of the centers of spheres with contact of third order with the curve. We give a definition of r-critical points of a smooth map between manifolds, and apply it to study the 2 and 3-critical points of the normal map in general and the 2-critical points for the case k = n = 2 in detail. In the later case we analyze the relation with the strong principal directions of Montaldi (1986) [2].engTopology and its Applicationsv. 159, n. 2, p. 537- 544, 1 fev. 2012Normal mapCritical pointsFocal setStrong principal directionsVeronese of curvatureEllipse of curvatureCritical points of higher order for the normal map of immersions in R^ dinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf200986https://locus.ufv.br//bitstream/123456789/21909/1/artigo.pdf57f68c124197b3a360eac3fba4cd1e42MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/21909/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5145https://locus.ufv.br//bitstream/123456789/21909/3/artigo.pdf.jpgffd4553c28ca52ff52b5dac8fc863778MD53123456789/219092018-09-21 23:00:37.087oai:locus.ufv.br:123456789/21909Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-09-22T02:00:37LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Critical points of higher order for the normal map of immersions in R^ d
title Critical points of higher order for the normal map of immersions in R^ d
spellingShingle Critical points of higher order for the normal map of immersions in R^ d
Monera, M. G.
Normal map
Critical points
Focal set
Strong principal directions
Veronese of curvature
Ellipse of curvature
title_short Critical points of higher order for the normal map of immersions in R^ d
title_full Critical points of higher order for the normal map of immersions in R^ d
title_fullStr Critical points of higher order for the normal map of immersions in R^ d
title_full_unstemmed Critical points of higher order for the normal map of immersions in R^ d
title_sort Critical points of higher order for the normal map of immersions in R^ d
author Monera, M. G.
author_facet Monera, M. G.
Montesinos-Amilibia, A.
Moraes, S. M.
Sanabria-Codesal, E.
author_role author
author2 Montesinos-Amilibia, A.
Moraes, S. M.
Sanabria-Codesal, E.
author2_role author
author
author
dc.contributor.author.fl_str_mv Monera, M. G.
Montesinos-Amilibia, A.
Moraes, S. M.
Sanabria-Codesal, E.
dc.subject.pt-BR.fl_str_mv Normal map
Critical points
Focal set
Strong principal directions
Veronese of curvature
Ellipse of curvature
topic Normal map
Critical points
Focal set
Strong principal directions
Veronese of curvature
Ellipse of curvature
description We study the critical points of the normal map ν : N M → R k + n , where M is an immersed k-dimensional submanifold of R k + n , N M is the normal bundle of M and ν ( m , u ) = m + u if u ∈ N m M. Usually, the image of these critical points is called the focal set. However, in that set there is a subset where the focusing is highest, as happens in the case of curves in R 3 with the curve of the centers of spheres with contact of third order with the curve. We give a definition of r-critical points of a smooth map between manifolds, and apply it to study the 2 and 3-critical points of the normal map in general and the 2-critical points for the case k = n = 2 in detail. In the later case we analyze the relation with the strong principal directions of Montaldi (1986) [2].
publishDate 2012
dc.date.issued.fl_str_mv 2012-02-01
dc.date.accessioned.fl_str_mv 2018-09-21T11:43:36Z
dc.date.available.fl_str_mv 2018-09-21T11:43:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1016/j.topol.2011.09.029
http://www.locus.ufv.br/handle/123456789/21909
dc.identifier.issn.none.fl_str_mv 01668641
identifier_str_mv 01668641
url https://doi.org/10.1016/j.topol.2011.09.029
http://www.locus.ufv.br/handle/123456789/21909
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv v. 159, n. 2, p. 537- 544, 1 fev. 2012
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Topology and its Applications
publisher.none.fl_str_mv Topology and its Applications
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/21909/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/21909/2/license.txt
https://locus.ufv.br//bitstream/123456789/21909/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 57f68c124197b3a360eac3fba4cd1e42
8a4605be74aa9ea9d79846c1fba20a33
ffd4553c28ca52ff52b5dac8fc863778
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212846351056896