Critical points of higher order for the normal map of immersions in R^ d
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1016/j.topol.2011.09.029 http://www.locus.ufv.br/handle/123456789/21909 |
Resumo: | We study the critical points of the normal map ν : N M → R k + n , where M is an immersed k-dimensional submanifold of R k + n , N M is the normal bundle of M and ν ( m , u ) = m + u if u ∈ N m M. Usually, the image of these critical points is called the focal set. However, in that set there is a subset where the focusing is highest, as happens in the case of curves in R 3 with the curve of the centers of spheres with contact of third order with the curve. We give a definition of r-critical points of a smooth map between manifolds, and apply it to study the 2 and 3-critical points of the normal map in general and the 2-critical points for the case k = n = 2 in detail. In the later case we analyze the relation with the strong principal directions of Montaldi (1986) [2]. |
id |
UFV_88148b618e17cbb32a8fca30f3e25057 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/21909 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Monera, M. G.Montesinos-Amilibia, A.Moraes, S. M.Sanabria-Codesal, E.2018-09-21T11:43:36Z2018-09-21T11:43:36Z2012-02-0101668641https://doi.org/10.1016/j.topol.2011.09.029http://www.locus.ufv.br/handle/123456789/21909We study the critical points of the normal map ν : N M → R k + n , where M is an immersed k-dimensional submanifold of R k + n , N M is the normal bundle of M and ν ( m , u ) = m + u if u ∈ N m M. Usually, the image of these critical points is called the focal set. However, in that set there is a subset where the focusing is highest, as happens in the case of curves in R 3 with the curve of the centers of spheres with contact of third order with the curve. We give a definition of r-critical points of a smooth map between manifolds, and apply it to study the 2 and 3-critical points of the normal map in general and the 2-critical points for the case k = n = 2 in detail. In the later case we analyze the relation with the strong principal directions of Montaldi (1986) [2].engTopology and its Applicationsv. 159, n. 2, p. 537- 544, 1 fev. 2012Normal mapCritical pointsFocal setStrong principal directionsVeronese of curvatureEllipse of curvatureCritical points of higher order for the normal map of immersions in R^ dinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf200986https://locus.ufv.br//bitstream/123456789/21909/1/artigo.pdf57f68c124197b3a360eac3fba4cd1e42MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/21909/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg5145https://locus.ufv.br//bitstream/123456789/21909/3/artigo.pdf.jpgffd4553c28ca52ff52b5dac8fc863778MD53123456789/219092018-09-21 23:00:37.087oai:locus.ufv.br:123456789/21909Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-09-22T02:00:37LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Critical points of higher order for the normal map of immersions in R^ d |
title |
Critical points of higher order for the normal map of immersions in R^ d |
spellingShingle |
Critical points of higher order for the normal map of immersions in R^ d Monera, M. G. Normal map Critical points Focal set Strong principal directions Veronese of curvature Ellipse of curvature |
title_short |
Critical points of higher order for the normal map of immersions in R^ d |
title_full |
Critical points of higher order for the normal map of immersions in R^ d |
title_fullStr |
Critical points of higher order for the normal map of immersions in R^ d |
title_full_unstemmed |
Critical points of higher order for the normal map of immersions in R^ d |
title_sort |
Critical points of higher order for the normal map of immersions in R^ d |
author |
Monera, M. G. |
author_facet |
Monera, M. G. Montesinos-Amilibia, A. Moraes, S. M. Sanabria-Codesal, E. |
author_role |
author |
author2 |
Montesinos-Amilibia, A. Moraes, S. M. Sanabria-Codesal, E. |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Monera, M. G. Montesinos-Amilibia, A. Moraes, S. M. Sanabria-Codesal, E. |
dc.subject.pt-BR.fl_str_mv |
Normal map Critical points Focal set Strong principal directions Veronese of curvature Ellipse of curvature |
topic |
Normal map Critical points Focal set Strong principal directions Veronese of curvature Ellipse of curvature |
description |
We study the critical points of the normal map ν : N M → R k + n , where M is an immersed k-dimensional submanifold of R k + n , N M is the normal bundle of M and ν ( m , u ) = m + u if u ∈ N m M. Usually, the image of these critical points is called the focal set. However, in that set there is a subset where the focusing is highest, as happens in the case of curves in R 3 with the curve of the centers of spheres with contact of third order with the curve. We give a definition of r-critical points of a smooth map between manifolds, and apply it to study the 2 and 3-critical points of the normal map in general and the 2-critical points for the case k = n = 2 in detail. In the later case we analyze the relation with the strong principal directions of Montaldi (1986) [2]. |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012-02-01 |
dc.date.accessioned.fl_str_mv |
2018-09-21T11:43:36Z |
dc.date.available.fl_str_mv |
2018-09-21T11:43:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1016/j.topol.2011.09.029 http://www.locus.ufv.br/handle/123456789/21909 |
dc.identifier.issn.none.fl_str_mv |
01668641 |
identifier_str_mv |
01668641 |
url |
https://doi.org/10.1016/j.topol.2011.09.029 http://www.locus.ufv.br/handle/123456789/21909 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 159, n. 2, p. 537- 544, 1 fev. 2012 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Topology and its Applications |
publisher.none.fl_str_mv |
Topology and its Applications |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/21909/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/21909/2/license.txt https://locus.ufv.br//bitstream/123456789/21909/3/artigo.pdf.jpg |
bitstream.checksum.fl_str_mv |
57f68c124197b3a360eac3fba4cd1e42 8a4605be74aa9ea9d79846c1fba20a33 ffd4553c28ca52ff52b5dac8fc863778 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801212846351056896 |