Influence of calcium oxide level and time of exposure to sugarcane on in vitro and in situ digestive kinetics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | https://doi.org/10.1016/j.anifeedsci.2009.06.005 http://www.locus.ufv.br/handle/123456789/22279 |
Resumo: | These experiments were carried out to evaluate, using in vitro and in situ techniques, the effects of three inclusion levels of calcium oxide (0, 5, and 10 g/kg of sugarcane fresh matter) and four exposure times (0, 24, 48, and 72 h) of sugarcane to calcium oxide on the chemical composition and digestive kinetic parameters of sugarcane. The treatments were arranged in a 3 by 4 factorial design. Freshly-cut sugarcane (whole plant) was treated with calcium oxide and separated into 12 piles inside a barn to prevent direct exposure to sunlight, rain, and wind. Every day, before and after animal feeding, the calcium oxide was proportionally hand-mixed with approximately 150 kg of freshly-cut sugarcane to make up the dietary treatments. The lowest (Ti) and greatest (Ts) temperature and pH of the treated sugarcane piles were measured immediately before and after sampling, respectively. The ether extract (EE) and DM were not affected (P>0.05) by either exposure time or inclusion level. However, CP increased linearly (P=0.01) and OM decreased linearly (P<0.0001) as the exposure time and calcium oxide inclusion level increased. Interactions between inclusion level and exposure time on DM, OM, CP, EE, Ti, and Ts were not observed. However, significant interactions were detected for non-fibre carbohydrate (NFC), neutral detergent fibre (aNDF), and pH. A quadratic effect of exposure time on the Ti and Ts was observed (P=0.001 and P=0.001, respectively). The maximum temperature was reached with approximately 51 h of exposure time. Calcium oxide positively affected the insoluble potentially digestible fraction of sugarcane DM and aNDF (P=0.001 and P=0.001, respectively), and the indigestible fraction of sugarcane aNDF (P=0.001). Interactions between inclusion level and exposure time on soluble and indigestible fractions of sugarcane DM (P=0.0001 and P=0.01, respectively) were found. However, no interactions (P>0.27) were found between inclusion level and exposure time on aNDF digestive kinetic parameters. The fractional digestion rate (kd) of sugarcane DM and aNDF was not influenced by treatments (P>0.05). The mean values of kd for sugarcane DM and aNDF were 0.0235 and 0.0215/h, respectively. The gas production kinetics parameters were not affected (P>0.05) by treatments. In conclusion, the inclusion of calcium oxide improved the in situ potentially digestible fraction of sugarcane DM and aNDF; however, it did not influence the fractional digestion rate. No effects were observed on the in vitro digestive kinetic parameters. |
id |
UFV_8cf46e97bba9c67b51f8ef3945a14cbe |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/22279 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Valadares Filho, S. C.Pina, D. S.Tedeschi, L. O.Azevedo, J. A. G.Detmann, E.Anderson, R.2018-10-16T12:08:02Z2018-10-16T12:08:02Z2009-08-2603778401https://doi.org/10.1016/j.anifeedsci.2009.06.005http://www.locus.ufv.br/handle/123456789/22279These experiments were carried out to evaluate, using in vitro and in situ techniques, the effects of three inclusion levels of calcium oxide (0, 5, and 10 g/kg of sugarcane fresh matter) and four exposure times (0, 24, 48, and 72 h) of sugarcane to calcium oxide on the chemical composition and digestive kinetic parameters of sugarcane. The treatments were arranged in a 3 by 4 factorial design. Freshly-cut sugarcane (whole plant) was treated with calcium oxide and separated into 12 piles inside a barn to prevent direct exposure to sunlight, rain, and wind. Every day, before and after animal feeding, the calcium oxide was proportionally hand-mixed with approximately 150 kg of freshly-cut sugarcane to make up the dietary treatments. The lowest (Ti) and greatest (Ts) temperature and pH of the treated sugarcane piles were measured immediately before and after sampling, respectively. The ether extract (EE) and DM were not affected (P>0.05) by either exposure time or inclusion level. However, CP increased linearly (P=0.01) and OM decreased linearly (P<0.0001) as the exposure time and calcium oxide inclusion level increased. Interactions between inclusion level and exposure time on DM, OM, CP, EE, Ti, and Ts were not observed. However, significant interactions were detected for non-fibre carbohydrate (NFC), neutral detergent fibre (aNDF), and pH. A quadratic effect of exposure time on the Ti and Ts was observed (P=0.001 and P=0.001, respectively). The maximum temperature was reached with approximately 51 h of exposure time. Calcium oxide positively affected the insoluble potentially digestible fraction of sugarcane DM and aNDF (P=0.001 and P=0.001, respectively), and the indigestible fraction of sugarcane aNDF (P=0.001). Interactions between inclusion level and exposure time on soluble and indigestible fractions of sugarcane DM (P=0.0001 and P=0.01, respectively) were found. However, no interactions (P>0.27) were found between inclusion level and exposure time on aNDF digestive kinetic parameters. The fractional digestion rate (kd) of sugarcane DM and aNDF was not influenced by treatments (P>0.05). The mean values of kd for sugarcane DM and aNDF were 0.0235 and 0.0215/h, respectively. The gas production kinetics parameters were not affected (P>0.05) by treatments. In conclusion, the inclusion of calcium oxide improved the in situ potentially digestible fraction of sugarcane DM and aNDF; however, it did not influence the fractional digestion rate. No effects were observed on the in vitro digestive kinetic parameters.engAnimal Feed Science and Technologyv. 153, n. 1– 2, p. 101- 112, ago. 2009Elsevier B.V.info:eu-repo/semantics/openAccessCalcium oxideGas productionSugarcaneDigestive kineticsInfluence of calcium oxide level and time of exposure to sugarcane on in vitro and in situ digestive kineticsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdftexto completoapplication/pdf194909https://locus.ufv.br//bitstream/123456789/22279/1/artigo.pdfe15f64ff596110bbc910619c9efd5c9dMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/22279/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/222792018-10-16 09:12:04.307oai:locus.ufv.br:123456789/22279Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-10-16T12:12:04LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.en.fl_str_mv |
Influence of calcium oxide level and time of exposure to sugarcane on in vitro and in situ digestive kinetics |
title |
Influence of calcium oxide level and time of exposure to sugarcane on in vitro and in situ digestive kinetics |
spellingShingle |
Influence of calcium oxide level and time of exposure to sugarcane on in vitro and in situ digestive kinetics Valadares Filho, S. C. Calcium oxide Gas production Sugarcane Digestive kinetics |
title_short |
Influence of calcium oxide level and time of exposure to sugarcane on in vitro and in situ digestive kinetics |
title_full |
Influence of calcium oxide level and time of exposure to sugarcane on in vitro and in situ digestive kinetics |
title_fullStr |
Influence of calcium oxide level and time of exposure to sugarcane on in vitro and in situ digestive kinetics |
title_full_unstemmed |
Influence of calcium oxide level and time of exposure to sugarcane on in vitro and in situ digestive kinetics |
title_sort |
Influence of calcium oxide level and time of exposure to sugarcane on in vitro and in situ digestive kinetics |
author |
Valadares Filho, S. C. |
author_facet |
Valadares Filho, S. C. Pina, D. S. Tedeschi, L. O. Azevedo, J. A. G. Detmann, E. Anderson, R. |
author_role |
author |
author2 |
Pina, D. S. Tedeschi, L. O. Azevedo, J. A. G. Detmann, E. Anderson, R. |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Valadares Filho, S. C. Pina, D. S. Tedeschi, L. O. Azevedo, J. A. G. Detmann, E. Anderson, R. |
dc.subject.pt-BR.fl_str_mv |
Calcium oxide Gas production Sugarcane Digestive kinetics |
topic |
Calcium oxide Gas production Sugarcane Digestive kinetics |
description |
These experiments were carried out to evaluate, using in vitro and in situ techniques, the effects of three inclusion levels of calcium oxide (0, 5, and 10 g/kg of sugarcane fresh matter) and four exposure times (0, 24, 48, and 72 h) of sugarcane to calcium oxide on the chemical composition and digestive kinetic parameters of sugarcane. The treatments were arranged in a 3 by 4 factorial design. Freshly-cut sugarcane (whole plant) was treated with calcium oxide and separated into 12 piles inside a barn to prevent direct exposure to sunlight, rain, and wind. Every day, before and after animal feeding, the calcium oxide was proportionally hand-mixed with approximately 150 kg of freshly-cut sugarcane to make up the dietary treatments. The lowest (Ti) and greatest (Ts) temperature and pH of the treated sugarcane piles were measured immediately before and after sampling, respectively. The ether extract (EE) and DM were not affected (P>0.05) by either exposure time or inclusion level. However, CP increased linearly (P=0.01) and OM decreased linearly (P<0.0001) as the exposure time and calcium oxide inclusion level increased. Interactions between inclusion level and exposure time on DM, OM, CP, EE, Ti, and Ts were not observed. However, significant interactions were detected for non-fibre carbohydrate (NFC), neutral detergent fibre (aNDF), and pH. A quadratic effect of exposure time on the Ti and Ts was observed (P=0.001 and P=0.001, respectively). The maximum temperature was reached with approximately 51 h of exposure time. Calcium oxide positively affected the insoluble potentially digestible fraction of sugarcane DM and aNDF (P=0.001 and P=0.001, respectively), and the indigestible fraction of sugarcane aNDF (P=0.001). Interactions between inclusion level and exposure time on soluble and indigestible fractions of sugarcane DM (P=0.0001 and P=0.01, respectively) were found. However, no interactions (P>0.27) were found between inclusion level and exposure time on aNDF digestive kinetic parameters. The fractional digestion rate (kd) of sugarcane DM and aNDF was not influenced by treatments (P>0.05). The mean values of kd for sugarcane DM and aNDF were 0.0235 and 0.0215/h, respectively. The gas production kinetics parameters were not affected (P>0.05) by treatments. In conclusion, the inclusion of calcium oxide improved the in situ potentially digestible fraction of sugarcane DM and aNDF; however, it did not influence the fractional digestion rate. No effects were observed on the in vitro digestive kinetic parameters. |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009-08-26 |
dc.date.accessioned.fl_str_mv |
2018-10-16T12:08:02Z |
dc.date.available.fl_str_mv |
2018-10-16T12:08:02Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://doi.org/10.1016/j.anifeedsci.2009.06.005 http://www.locus.ufv.br/handle/123456789/22279 |
dc.identifier.issn.none.fl_str_mv |
03778401 |
identifier_str_mv |
03778401 |
url |
https://doi.org/10.1016/j.anifeedsci.2009.06.005 http://www.locus.ufv.br/handle/123456789/22279 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofseries.pt-BR.fl_str_mv |
v. 153, n. 1– 2, p. 101- 112, ago. 2009 |
dc.rights.driver.fl_str_mv |
Elsevier B.V. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Elsevier B.V. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Animal Feed Science and Technology |
publisher.none.fl_str_mv |
Animal Feed Science and Technology |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/22279/1/artigo.pdf https://locus.ufv.br//bitstream/123456789/22279/2/license.txt |
bitstream.checksum.fl_str_mv |
e15f64ff596110bbc910619c9efd5c9d 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213127592771584 |