Densidade de variedades estáveis fortes em fluxos Anosov
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | LOCUS Repositório Institucional da UFV |
Texto Completo: | http://www.locus.ufv.br/handle/123456789/11615 |
Resumo: | No presente trabalho, provaremos que para um fluxo Anosov Ø : M x R → M de classe Сr (r≥ 1), onde M é uma variedade Riemanniana compacta, conexa, suave e tal que o conjunto dos pontos não errantes seja igual a M , existem exatamente duas possibilidades: que cada variedade estável forte e instável forte e densa em M ou Øt (bt é a suspensão de um difeomoríismo de Anosov de uma subvariedade compacta C1 de codimensão um em M. |
id |
UFV_e6e140f662fae00cd870bbb7e6a0c802 |
---|---|
oai_identifier_str |
oai:locus.ufv.br:123456789/11615 |
network_acronym_str |
UFV |
network_name_str |
LOCUS Repositório Institucional da UFV |
repository_id_str |
2145 |
spelling |
Carvalho, Bernardo Melo deYucra, Wily Sarmientohttp://lattes.cnpq.br/7810116455247858Apaza Calla, Enoch Humberto2017-08-25T12:10:19Z2017-08-25T12:10:19Z2017-07-21YUCRA, Wily Sarmiento. Densidade de variedades estáveis fortes em fluxos Anosov. 2017. 59f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2017.http://www.locus.ufv.br/handle/123456789/11615No presente trabalho, provaremos que para um fluxo Anosov Ø : M x R → M de classe Сr (r≥ 1), onde M é uma variedade Riemanniana compacta, conexa, suave e tal que o conjunto dos pontos não errantes seja igual a M , existem exatamente duas possibilidades: que cada variedade estável forte e instável forte e densa em M ou Øt (bt é a suspensão de um difeomoríismo de Anosov de uma subvariedade compacta C1 de codimensão um em M.In this paper, we Will prove that for a flow Ø : M x R → M of classe Сr (r≥ 1), Where M is a smooth compact connected Riemannian manifold and such that the set of nonwandering points is equal to M, there are exactly two possibilities: each strong stable and each strong unstable manifold is dense in M, or Øt (bt is the suspension of an Anosov diffeomorphism of a compact C1 submanifold of codimension one in M.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de ViçosaSistemas dinâmicos diferenciaisSistemas DinâmicosDensidade de variedades estáveis fortes em fluxos AnosovDensity of strong stable manifolds in Anosov flowsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisUniversidade Federal de ViçosaDepartamento de MatemáticaMestre em MatemáticaViçosa - MG2017-07-21Mestradoinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALtexto completo.pdftexto completo.pdftexto completoapplication/pdf2381011https://locus.ufv.br//bitstream/123456789/11615/1/texto%20completo.pdff27607f1a118784f9b12efe0e390bfdeMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/11615/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILtexto completo.pdf.jpgtexto completo.pdf.jpgIM Thumbnailimage/jpeg3629https://locus.ufv.br//bitstream/123456789/11615/3/texto%20completo.pdf.jpgc9db30780e069c996549c02a523f7002MD53123456789/116152017-08-25 23:00:25.966oai:locus.ufv.br:123456789/11615Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-08-26T02:00:25LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false |
dc.title.pt-BR.fl_str_mv |
Densidade de variedades estáveis fortes em fluxos Anosov |
dc.title.en.fl_str_mv |
Density of strong stable manifolds in Anosov flows |
title |
Densidade de variedades estáveis fortes em fluxos Anosov |
spellingShingle |
Densidade de variedades estáveis fortes em fluxos Anosov Yucra, Wily Sarmiento Sistemas dinâmicos diferenciais Sistemas Dinâmicos |
title_short |
Densidade de variedades estáveis fortes em fluxos Anosov |
title_full |
Densidade de variedades estáveis fortes em fluxos Anosov |
title_fullStr |
Densidade de variedades estáveis fortes em fluxos Anosov |
title_full_unstemmed |
Densidade de variedades estáveis fortes em fluxos Anosov |
title_sort |
Densidade de variedades estáveis fortes em fluxos Anosov |
author |
Yucra, Wily Sarmiento |
author_facet |
Yucra, Wily Sarmiento |
author_role |
author |
dc.contributor.authorLattes.pt-BR.fl_str_mv |
http://lattes.cnpq.br/7810116455247858 |
dc.contributor.none.fl_str_mv |
Carvalho, Bernardo Melo de |
dc.contributor.author.fl_str_mv |
Yucra, Wily Sarmiento |
dc.contributor.advisor1.fl_str_mv |
Apaza Calla, Enoch Humberto |
contributor_str_mv |
Apaza Calla, Enoch Humberto |
dc.subject.pt-BR.fl_str_mv |
Sistemas dinâmicos diferenciais |
topic |
Sistemas dinâmicos diferenciais Sistemas Dinâmicos |
dc.subject.cnpq.fl_str_mv |
Sistemas Dinâmicos |
description |
No presente trabalho, provaremos que para um fluxo Anosov Ø : M x R → M de classe Сr (r≥ 1), onde M é uma variedade Riemanniana compacta, conexa, suave e tal que o conjunto dos pontos não errantes seja igual a M , existem exatamente duas possibilidades: que cada variedade estável forte e instável forte e densa em M ou Øt (bt é a suspensão de um difeomoríismo de Anosov de uma subvariedade compacta C1 de codimensão um em M. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-08-25T12:10:19Z |
dc.date.available.fl_str_mv |
2017-08-25T12:10:19Z |
dc.date.issued.fl_str_mv |
2017-07-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
YUCRA, Wily Sarmiento. Densidade de variedades estáveis fortes em fluxos Anosov. 2017. 59f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2017. |
dc.identifier.uri.fl_str_mv |
http://www.locus.ufv.br/handle/123456789/11615 |
identifier_str_mv |
YUCRA, Wily Sarmiento. Densidade de variedades estáveis fortes em fluxos Anosov. 2017. 59f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2017. |
url |
http://www.locus.ufv.br/handle/123456789/11615 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
publisher.none.fl_str_mv |
Universidade Federal de Viçosa |
dc.source.none.fl_str_mv |
reponame:LOCUS Repositório Institucional da UFV instname:Universidade Federal de Viçosa (UFV) instacron:UFV |
instname_str |
Universidade Federal de Viçosa (UFV) |
instacron_str |
UFV |
institution |
UFV |
reponame_str |
LOCUS Repositório Institucional da UFV |
collection |
LOCUS Repositório Institucional da UFV |
bitstream.url.fl_str_mv |
https://locus.ufv.br//bitstream/123456789/11615/1/texto%20completo.pdf https://locus.ufv.br//bitstream/123456789/11615/2/license.txt https://locus.ufv.br//bitstream/123456789/11615/3/texto%20completo.pdf.jpg |
bitstream.checksum.fl_str_mv |
f27607f1a118784f9b12efe0e390bfde 8a4605be74aa9ea9d79846c1fba20a33 c9db30780e069c996549c02a523f7002 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV) |
repository.mail.fl_str_mv |
fabiojreis@ufv.br |
_version_ |
1801213036730515456 |