ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT

Detalhes bibliográficos
Autor(a) principal: Santis, Rodrigo Barbosa de
Data de Publicação: 2017
Outros Autores: Aguiar, Eduardo Pestana de, Goliatt, Leonardo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Revista Interdisciplinar de Pesquisa em Engenharia
Texto Completo: https://periodicos.unb.br/index.php/ripe/article/view/21726
Resumo: Strategic sourcing is an important technique within supply chain management area that allows companies to understand their purchasing portfolio and to better take advantage of their bargain power versus key suppliers, reducing supply risks to an acceptable minimum. The Kraljic portfolio matrix is an important model for evaluating materials and services categories in two main aspects: the importance of a particular purchasing and the complexity of the supply market. Although, the classification phase can present a hard task depending on the number of materials and the complexity of a specific portfolio. In this context, the present work proposes the application of machine learning classifiers ”“ artificial neural network, extreme learning machine and K-nearest neighbors ”“ for material grouping in a data set of 1,560 active items composing the electric and electronic portfolio components of a large Brazilian transportation company. Eight features are used for classifying material purchase and maintenance criticality. The artificial neural network presented an accuracy of 94.77% for purchase and 60.41% for maintenance classification. 
id UNB-19_d2e0d56c648651d3a7fcbd32cdc9ad4b
oai_identifier_str oai:ojs.pkp.sfu.ca:article/21726
network_acronym_str UNB-19
network_name_str Revista Interdisciplinar de Pesquisa em Engenharia
repository_id_str
spelling ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENTStrategic sourcing. Kraljic portfolio matrix. Supervised learning. Classification problem. Artificial neural network.Strategic sourcing is an important technique within supply chain management area that allows companies to understand their purchasing portfolio and to better take advantage of their bargain power versus key suppliers, reducing supply risks to an acceptable minimum. The Kraljic portfolio matrix is an important model for evaluating materials and services categories in two main aspects: the importance of a particular purchasing and the complexity of the supply market. Although, the classification phase can present a hard task depending on the number of materials and the complexity of a specific portfolio. In this context, the present work proposes the application of machine learning classifiers ”“ artificial neural network, extreme learning machine and K-nearest neighbors ”“ for material grouping in a data set of 1,560 active items composing the electric and electronic portfolio components of a large Brazilian transportation company. Eight features are used for classifying material purchase and maintenance criticality. The artificial neural network presented an accuracy of 94.77% for purchase and 60.41% for maintenance classification. Programa de Pós-Graduação em Integridade de Materiais da Engenharia2017-01-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.unb.br/index.php/ripe/article/view/2172610.26512/ripe.v2i10.21726Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 2 No. 10 (2016): COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR OPTMIZATION AND DATA MODELING (II); 39-50Revista Interdisciplinar de Pesquisa em Engenharia; v. 2 n. 10 (2016): COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR OPTMIZATION AND DATA MODELING (II); 39-502447-6102reponame:Revista Interdisciplinar de Pesquisa em Engenhariainstname:Universidade de Brasília (UnB)instacron:UNBenghttps://periodicos.unb.br/index.php/ripe/article/view/21726/20038Copyright (c) 2019 Revista Interdisciplinar de Pesquisa em Engenharia - RIPEinfo:eu-repo/semantics/openAccessSantis, Rodrigo Barbosa deAguiar, Eduardo Pestana deGoliatt, Leonardo2019-06-09T21:47:33Zoai:ojs.pkp.sfu.ca:article/21726Revistahttps://periodicos.unb.br/index.php/ripePUBhttps://periodicos.unb.br/index.php/ripe/oaianflor@unb.br2447-61022447-6102opendoar:2019-06-09T21:47:33Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB)false
dc.title.none.fl_str_mv ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT
title ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT
spellingShingle ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT
Santis, Rodrigo Barbosa de
Strategic sourcing. Kraljic portfolio matrix. Supervised learning. Classification problem. Artificial neural network.
title_short ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT
title_full ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT
title_fullStr ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT
title_full_unstemmed ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT
title_sort ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT
author Santis, Rodrigo Barbosa de
author_facet Santis, Rodrigo Barbosa de
Aguiar, Eduardo Pestana de
Goliatt, Leonardo
author_role author
author2 Aguiar, Eduardo Pestana de
Goliatt, Leonardo
author2_role author
author
dc.contributor.author.fl_str_mv Santis, Rodrigo Barbosa de
Aguiar, Eduardo Pestana de
Goliatt, Leonardo
dc.subject.por.fl_str_mv Strategic sourcing. Kraljic portfolio matrix. Supervised learning. Classification problem. Artificial neural network.
topic Strategic sourcing. Kraljic portfolio matrix. Supervised learning. Classification problem. Artificial neural network.
description Strategic sourcing is an important technique within supply chain management area that allows companies to understand their purchasing portfolio and to better take advantage of their bargain power versus key suppliers, reducing supply risks to an acceptable minimum. The Kraljic portfolio matrix is an important model for evaluating materials and services categories in two main aspects: the importance of a particular purchasing and the complexity of the supply market. Although, the classification phase can present a hard task depending on the number of materials and the complexity of a specific portfolio. In this context, the present work proposes the application of machine learning classifiers ”“ artificial neural network, extreme learning machine and K-nearest neighbors ”“ for material grouping in a data set of 1,560 active items composing the electric and electronic portfolio components of a large Brazilian transportation company. Eight features are used for classifying material purchase and maintenance criticality. The artificial neural network presented an accuracy of 94.77% for purchase and 60.41% for maintenance classification. 
publishDate 2017
dc.date.none.fl_str_mv 2017-01-25
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.unb.br/index.php/ripe/article/view/21726
10.26512/ripe.v2i10.21726
url https://periodicos.unb.br/index.php/ripe/article/view/21726
identifier_str_mv 10.26512/ripe.v2i10.21726
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.unb.br/index.php/ripe/article/view/21726/20038
dc.rights.driver.fl_str_mv Copyright (c) 2019 Revista Interdisciplinar de Pesquisa em Engenharia - RIPE
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2019 Revista Interdisciplinar de Pesquisa em Engenharia - RIPE
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Programa de Pós-Graduação em Integridade de Materiais da Engenharia
publisher.none.fl_str_mv Programa de Pós-Graduação em Integridade de Materiais da Engenharia
dc.source.none.fl_str_mv Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 2 No. 10 (2016): COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR OPTMIZATION AND DATA MODELING (II); 39-50
Revista Interdisciplinar de Pesquisa em Engenharia; v. 2 n. 10 (2016): COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR OPTMIZATION AND DATA MODELING (II); 39-50
2447-6102
reponame:Revista Interdisciplinar de Pesquisa em Engenharia
instname:Universidade de Brasília (UnB)
instacron:UNB
instname_str Universidade de Brasília (UnB)
instacron_str UNB
institution UNB
reponame_str Revista Interdisciplinar de Pesquisa em Engenharia
collection Revista Interdisciplinar de Pesquisa em Engenharia
repository.name.fl_str_mv Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB)
repository.mail.fl_str_mv anflor@unb.br
_version_ 1798315226683146240