ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Revista Interdisciplinar de Pesquisa em Engenharia |
Texto Completo: | https://periodicos.unb.br/index.php/ripe/article/view/21726 |
Resumo: | Strategic sourcing is an important technique within supply chain management area that allows companies to understand their purchasing portfolio and to better take advantage of their bargain power versus key suppliers, reducing supply risks to an acceptable minimum. The Kraljic portfolio matrix is an important model for evaluating materials and services categories in two main aspects: the importance of a particular purchasing and the complexity of the supply market. Although, the classification phase can present a hard task depending on the number of materials and the complexity of a specific portfolio. In this context, the present work proposes the application of machine learning classifiers ”“ artificial neural network, extreme learning machine and K-nearest neighbors ”“ for material grouping in a data set of 1,560 active items composing the electric and electronic portfolio components of a large Brazilian transportation company. Eight features are used for classifying material purchase and maintenance criticality. The artificial neural network presented an accuracy of 94.77% for purchase and 60.41% for maintenance classification. |
id |
UNB-19_d2e0d56c648651d3a7fcbd32cdc9ad4b |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/21726 |
network_acronym_str |
UNB-19 |
network_name_str |
Revista Interdisciplinar de Pesquisa em Engenharia |
repository_id_str |
|
spelling |
ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENTStrategic sourcing. Kraljic portfolio matrix. Supervised learning. Classification problem. Artificial neural network.Strategic sourcing is an important technique within supply chain management area that allows companies to understand their purchasing portfolio and to better take advantage of their bargain power versus key suppliers, reducing supply risks to an acceptable minimum. The Kraljic portfolio matrix is an important model for evaluating materials and services categories in two main aspects: the importance of a particular purchasing and the complexity of the supply market. Although, the classification phase can present a hard task depending on the number of materials and the complexity of a specific portfolio. In this context, the present work proposes the application of machine learning classifiers ”“ artificial neural network, extreme learning machine and K-nearest neighbors ”“ for material grouping in a data set of 1,560 active items composing the electric and electronic portfolio components of a large Brazilian transportation company. Eight features are used for classifying material purchase and maintenance criticality. The artificial neural network presented an accuracy of 94.77% for purchase and 60.41% for maintenance classification. Programa de Pós-Graduação em Integridade de Materiais da Engenharia2017-01-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.unb.br/index.php/ripe/article/view/2172610.26512/ripe.v2i10.21726Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 2 No. 10 (2016): COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR OPTMIZATION AND DATA MODELING (II); 39-50Revista Interdisciplinar de Pesquisa em Engenharia; v. 2 n. 10 (2016): COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR OPTMIZATION AND DATA MODELING (II); 39-502447-6102reponame:Revista Interdisciplinar de Pesquisa em Engenhariainstname:Universidade de Brasília (UnB)instacron:UNBenghttps://periodicos.unb.br/index.php/ripe/article/view/21726/20038Copyright (c) 2019 Revista Interdisciplinar de Pesquisa em Engenharia - RIPEinfo:eu-repo/semantics/openAccessSantis, Rodrigo Barbosa deAguiar, Eduardo Pestana deGoliatt, Leonardo2019-06-09T21:47:33Zoai:ojs.pkp.sfu.ca:article/21726Revistahttps://periodicos.unb.br/index.php/ripePUBhttps://periodicos.unb.br/index.php/ripe/oaianflor@unb.br2447-61022447-6102opendoar:2019-06-09T21:47:33Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT |
title |
ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT |
spellingShingle |
ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT Santis, Rodrigo Barbosa de Strategic sourcing. Kraljic portfolio matrix. Supervised learning. Classification problem. Artificial neural network. |
title_short |
ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT |
title_full |
ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT |
title_fullStr |
ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT |
title_full_unstemmed |
ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT |
title_sort |
ARTIFICIAL NEURAL NETWORKS FOR MATERIAL CLASSIFICATION IN PURCHASING PORTFOLIO MANAGEMENT |
author |
Santis, Rodrigo Barbosa de |
author_facet |
Santis, Rodrigo Barbosa de Aguiar, Eduardo Pestana de Goliatt, Leonardo |
author_role |
author |
author2 |
Aguiar, Eduardo Pestana de Goliatt, Leonardo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Santis, Rodrigo Barbosa de Aguiar, Eduardo Pestana de Goliatt, Leonardo |
dc.subject.por.fl_str_mv |
Strategic sourcing. Kraljic portfolio matrix. Supervised learning. Classification problem. Artificial neural network. |
topic |
Strategic sourcing. Kraljic portfolio matrix. Supervised learning. Classification problem. Artificial neural network. |
description |
Strategic sourcing is an important technique within supply chain management area that allows companies to understand their purchasing portfolio and to better take advantage of their bargain power versus key suppliers, reducing supply risks to an acceptable minimum. The Kraljic portfolio matrix is an important model for evaluating materials and services categories in two main aspects: the importance of a particular purchasing and the complexity of the supply market. Although, the classification phase can present a hard task depending on the number of materials and the complexity of a specific portfolio. In this context, the present work proposes the application of machine learning classifiers ”“ artificial neural network, extreme learning machine and K-nearest neighbors ”“ for material grouping in a data set of 1,560 active items composing the electric and electronic portfolio components of a large Brazilian transportation company. Eight features are used for classifying material purchase and maintenance criticality. The artificial neural network presented an accuracy of 94.77% for purchase and 60.41% for maintenance classification. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-25 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.unb.br/index.php/ripe/article/view/21726 10.26512/ripe.v2i10.21726 |
url |
https://periodicos.unb.br/index.php/ripe/article/view/21726 |
identifier_str_mv |
10.26512/ripe.v2i10.21726 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.unb.br/index.php/ripe/article/view/21726/20038 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2019 Revista Interdisciplinar de Pesquisa em Engenharia - RIPE info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2019 Revista Interdisciplinar de Pesquisa em Engenharia - RIPE |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Programa de Pós-Graduação em Integridade de Materiais da Engenharia |
publisher.none.fl_str_mv |
Programa de Pós-Graduação em Integridade de Materiais da Engenharia |
dc.source.none.fl_str_mv |
Revista Interdisciplinar de Pesquisa em Engenharia; Vol. 2 No. 10 (2016): COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR OPTMIZATION AND DATA MODELING (II); 39-50 Revista Interdisciplinar de Pesquisa em Engenharia; v. 2 n. 10 (2016): COMPUTATIONAL INTELLIGENCE TECHNIQUES FOR OPTMIZATION AND DATA MODELING (II); 39-50 2447-6102 reponame:Revista Interdisciplinar de Pesquisa em Engenharia instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Revista Interdisciplinar de Pesquisa em Engenharia |
collection |
Revista Interdisciplinar de Pesquisa em Engenharia |
repository.name.fl_str_mv |
Revista Interdisciplinar de Pesquisa em Engenharia - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
anflor@unb.br |
_version_ |
1798315226683146240 |