Existence and concentration of positive solutions for a critical p&q equation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UnB |
Texto Completo: | http://repositorio2.unb.br/jspui/handle/10482/48604 https://doi.org/10.1515/anona-2020-0190 |
Resumo: | We show existence and concentration results for a class of p&q critical problems given by −div a ϵp|∇u| p ϵp|∇u| p−2∇u + V(z)b |u| p |u| p−2u = f(u) + |u| q*−2u in RN , where u ∈ W1,p(RN) ∩ W1,q(RN), ϵ > 0 is a small parameter, 1 < p ≤ q < N, N ≥ 2 and q* = Nq/(N − q). The potential V is positive and f is a superlinear function of C1 class. We use Mountain Pass Theorem and the penalization arguments introduced by Del Pino & Felmer’s associated to Lions’ Concentration and Compactness Principle in order to overcome the lack of compactness. |
id |
UNB_d193216075c98ad2028fe041bb15234e |
---|---|
oai_identifier_str |
oai:repositorio.unb.br:10482/48604 |
network_acronym_str |
UNB |
network_name_str |
Repositório Institucional da UnB |
repository_id_str |
|
spelling |
Existence and concentration of positive solutions for a critical p&q equationExpoente críticoEquação p&qMétodos variacionaisWe show existence and concentration results for a class of p&q critical problems given by −div a ϵp|∇u| p ϵp|∇u| p−2∇u + V(z)b |u| p |u| p−2u = f(u) + |u| q*−2u in RN , where u ∈ W1,p(RN) ∩ W1,q(RN), ϵ > 0 is a small parameter, 1 < p ≤ q < N, N ≥ 2 and q* = Nq/(N − q). The potential V is positive and f is a superlinear function of C1 class. We use Mountain Pass Theorem and the penalization arguments introduced by Del Pino & Felmer’s associated to Lions’ Concentration and Compactness Principle in order to overcome the lack of compactness.Instituto de Ciências Exatas (IE)Departamento de Matemática (IE MAT)De Gruyter2024-07-08T17:00:23Z2024-07-08T17:00:23Z2021-07-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCOSTA, Gustavo S.; FIGUEIREDO, Giovany M. Existence and concentration of positive solutions for a critical p&q equation. Advances in Nonlinear Analysis, [S. l.], v. 11, n.1, 2, p. 243-267, 2022. DOI: https://doi.org/10.1515/anona-2020-0190. Disponível em:https://www.degruyter.com/document/doi/10.1515/anona-2020-0190/html. Acesso em: 08 jul. 2024.http://repositorio2.unb.br/jspui/handle/10482/48604https://doi.org/10.1515/anona-2020-0190engOpen Access. © 2021 Gustavo S. Costa and Giovany M. Figueiredo, published by De Gruyter. (CC BY) This work is licensed under the Creative Commons Attribution alone 4.0 License.info:eu-repo/semantics/openAccessCosta, Gustavo Silvestre do AmaralFigueiredo, Giovany de Jesus Malcherreponame:Repositório Institucional da UnBinstname:Universidade de Brasília (UnB)instacron:UNB2024-07-08T17:00:23Zoai:repositorio.unb.br:10482/48604Repositório InstitucionalPUBhttps://repositorio.unb.br/oai/requestrepositorio@unb.bropendoar:2024-07-08T17:00:23Repositório Institucional da UnB - Universidade de Brasília (UnB)false |
dc.title.none.fl_str_mv |
Existence and concentration of positive solutions for a critical p&q equation |
title |
Existence and concentration of positive solutions for a critical p&q equation |
spellingShingle |
Existence and concentration of positive solutions for a critical p&q equation Costa, Gustavo Silvestre do Amaral Expoente crítico Equação p&q Métodos variacionais |
title_short |
Existence and concentration of positive solutions for a critical p&q equation |
title_full |
Existence and concentration of positive solutions for a critical p&q equation |
title_fullStr |
Existence and concentration of positive solutions for a critical p&q equation |
title_full_unstemmed |
Existence and concentration of positive solutions for a critical p&q equation |
title_sort |
Existence and concentration of positive solutions for a critical p&q equation |
author |
Costa, Gustavo Silvestre do Amaral |
author_facet |
Costa, Gustavo Silvestre do Amaral Figueiredo, Giovany de Jesus Malcher |
author_role |
author |
author2 |
Figueiredo, Giovany de Jesus Malcher |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Costa, Gustavo Silvestre do Amaral Figueiredo, Giovany de Jesus Malcher |
dc.subject.por.fl_str_mv |
Expoente crítico Equação p&q Métodos variacionais |
topic |
Expoente crítico Equação p&q Métodos variacionais |
description |
We show existence and concentration results for a class of p&q critical problems given by −div a ϵp|∇u| p ϵp|∇u| p−2∇u + V(z)b |u| p |u| p−2u = f(u) + |u| q*−2u in RN , where u ∈ W1,p(RN) ∩ W1,q(RN), ϵ > 0 is a small parameter, 1 < p ≤ q < N, N ≥ 2 and q* = Nq/(N − q). The potential V is positive and f is a superlinear function of C1 class. We use Mountain Pass Theorem and the penalization arguments introduced by Del Pino & Felmer’s associated to Lions’ Concentration and Compactness Principle in order to overcome the lack of compactness. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-07-17 2024-07-08T17:00:23Z 2024-07-08T17:00:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
COSTA, Gustavo S.; FIGUEIREDO, Giovany M. Existence and concentration of positive solutions for a critical p&q equation. Advances in Nonlinear Analysis, [S. l.], v. 11, n.1, 2, p. 243-267, 2022. DOI: https://doi.org/10.1515/anona-2020-0190. Disponível em:https://www.degruyter.com/document/doi/10.1515/anona-2020-0190/html. Acesso em: 08 jul. 2024. http://repositorio2.unb.br/jspui/handle/10482/48604 https://doi.org/10.1515/anona-2020-0190 |
identifier_str_mv |
COSTA, Gustavo S.; FIGUEIREDO, Giovany M. Existence and concentration of positive solutions for a critical p&q equation. Advances in Nonlinear Analysis, [S. l.], v. 11, n.1, 2, p. 243-267, 2022. DOI: https://doi.org/10.1515/anona-2020-0190. Disponível em:https://www.degruyter.com/document/doi/10.1515/anona-2020-0190/html. Acesso em: 08 jul. 2024. |
url |
http://repositorio2.unb.br/jspui/handle/10482/48604 https://doi.org/10.1515/anona-2020-0190 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UnB instname:Universidade de Brasília (UnB) instacron:UNB |
instname_str |
Universidade de Brasília (UnB) |
instacron_str |
UNB |
institution |
UNB |
reponame_str |
Repositório Institucional da UnB |
collection |
Repositório Institucional da UnB |
repository.name.fl_str_mv |
Repositório Institucional da UnB - Universidade de Brasília (UnB) |
repository.mail.fl_str_mv |
repositorio@unb.br |
_version_ |
1814508278380494848 |