Exposure to 50 Hz electromagnetic field changes the efficiency of the scorpion alpha toxin
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | The Journal of venomous animals and toxins including tropical diseases (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992015000100344 |
Resumo: | AbstractBackground Extremely low-frequency (50 Hz) electromagnetic field (ELF-EMF) is produced by electric power transmission lines and electronic devices of everyday use. Some phenomena are proposed as “first effects” of ELF-EMF: the discrete changes in the membrane potential and the increase of the calcium channel activity as well as the intracellular concentration of Ca 2+ . Interaction of the scorpion alpha toxin with the sodium channel depends on the orientation of the charges and may be perturbed by changes in the membrane polarization. The toxin induces overexcitability in the nervous system and an increase in the neurotransmitters released with different consequences, mainly the paralysis of muscles. We assumed that the exposure to ELF-EMF 0.7 mT will change the effects of the insect selective scorpion alpha toxin (recombinant LqhαIT from Leiurus quinquestriatus hebraeus) at the level of the cercal nerve function, the synaptic transmission and on the level of entire insect organism. Taking into account the compensatory mechanisms in organisms, we tested in addition ten times higher ELF-EMF on whole insects.Methods Experiments were performed in vivo on cockroaches (Periplaneta americana) and in vitro – on isolated cockroach abdominal nerve cord with cerci. In biotests, the effects of LqhαIT (10 −8 M) were estimated on the basis of the insect ability to turn back from dorsal to ventral side. Three groups were compared: the control one and the two exposed to ELF-EMF – 0.7 and 7 mT. Bioelectrical activity of the cercal nerve and of the connective nerve that leaves the terminal abdominal ganglion was recorded using extracellular electrodes. LqhαIT (5 × 10 −8 M) induced modifications of neuronal activity that were observed in the control cockroach preparations and in the ones exposed to ELF-EMF (0.7 mT). The exposure to ELF-EMF was carried out using coils with a size appropriate to the examined objects.Results The exposure to ELF-EMF (0.7 mT) modified the effects of LqhαIT (5 × 10−8 M) on activity of the cercal nerve and of the connective nerve. We observed a decrease of the toxin effect on the cercal nerve activity, but the toxic effect of LqhαIT on the connective nerve was increased. Biotests showed that toxicity of LqhαIT (10 −8 M) on cockroaches was reduced by the exposure to ELF-EMF (0.7 and 7 mT).Conclusions The exposure to 50 Hz ELF-EMF modified the mode of action of the anti-insect scorpion alpha toxin LqhαIT at cellular level of the cockroach nervous system and in biotests. Toxin appeared as a usefull tool in distinguishing between the primary and the secondary effects of ELF-EMF. |
id |
UNESP-11_6e9de4fe40d565f0abec1db27b66c31a |
---|---|
oai_identifier_str |
oai:scielo:S1678-91992015000100344 |
network_acronym_str |
UNESP-11 |
network_name_str |
The Journal of venomous animals and toxins including tropical diseases (Online) |
repository_id_str |
|
spelling |
Exposure to 50 Hz electromagnetic field changes the efficiency of the scorpion alpha toxin50 Hz electromagnetic fieldAlpha scorpion toxinCockroachBioelectrical activityAbstractBackground Extremely low-frequency (50 Hz) electromagnetic field (ELF-EMF) is produced by electric power transmission lines and electronic devices of everyday use. Some phenomena are proposed as “first effects” of ELF-EMF: the discrete changes in the membrane potential and the increase of the calcium channel activity as well as the intracellular concentration of Ca 2+ . Interaction of the scorpion alpha toxin with the sodium channel depends on the orientation of the charges and may be perturbed by changes in the membrane polarization. The toxin induces overexcitability in the nervous system and an increase in the neurotransmitters released with different consequences, mainly the paralysis of muscles. We assumed that the exposure to ELF-EMF 0.7 mT will change the effects of the insect selective scorpion alpha toxin (recombinant LqhαIT from Leiurus quinquestriatus hebraeus) at the level of the cercal nerve function, the synaptic transmission and on the level of entire insect organism. Taking into account the compensatory mechanisms in organisms, we tested in addition ten times higher ELF-EMF on whole insects.Methods Experiments were performed in vivo on cockroaches (Periplaneta americana) and in vitro – on isolated cockroach abdominal nerve cord with cerci. In biotests, the effects of LqhαIT (10 −8 M) were estimated on the basis of the insect ability to turn back from dorsal to ventral side. Three groups were compared: the control one and the two exposed to ELF-EMF – 0.7 and 7 mT. Bioelectrical activity of the cercal nerve and of the connective nerve that leaves the terminal abdominal ganglion was recorded using extracellular electrodes. LqhαIT (5 × 10 −8 M) induced modifications of neuronal activity that were observed in the control cockroach preparations and in the ones exposed to ELF-EMF (0.7 mT). The exposure to ELF-EMF was carried out using coils with a size appropriate to the examined objects.Results The exposure to ELF-EMF (0.7 mT) modified the effects of LqhαIT (5 × 10−8 M) on activity of the cercal nerve and of the connective nerve. We observed a decrease of the toxin effect on the cercal nerve activity, but the toxic effect of LqhαIT on the connective nerve was increased. Biotests showed that toxicity of LqhαIT (10 −8 M) on cockroaches was reduced by the exposure to ELF-EMF (0.7 and 7 mT).Conclusions The exposure to 50 Hz ELF-EMF modified the mode of action of the anti-insect scorpion alpha toxin LqhαIT at cellular level of the cockroach nervous system and in biotests. Toxin appeared as a usefull tool in distinguishing between the primary and the secondary effects of ELF-EMF.Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP)2015-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992015000100344Journal of Venomous Animals and Toxins including Tropical Diseases v.21 2015reponame:The Journal of venomous animals and toxins including tropical diseases (Online)instname:Universidade Estadual Paulista (UNESP)instacron:UNESP10.1186/s40409-015-0040-9info:eu-repo/semantics/openAccessJankowska,MilenaPawlowska-Mainville,AgnieszkaStankiewicz,MariaRogalska,JustynaWyszkowska,Joannaeng2015-10-14T00:00:00Zoai:scielo:S1678-91992015000100344Revistahttp://www.scielo.br/jvatitdPUBhttps://old.scielo.br/oai/scielo-oai.php||editorial@jvat.org.br1678-91991678-9180opendoar:2015-10-14T00:00The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Exposure to 50 Hz electromagnetic field changes the efficiency of the scorpion alpha toxin |
title |
Exposure to 50 Hz electromagnetic field changes the efficiency of the scorpion alpha toxin |
spellingShingle |
Exposure to 50 Hz electromagnetic field changes the efficiency of the scorpion alpha toxin Jankowska,Milena 50 Hz electromagnetic field Alpha scorpion toxin Cockroach Bioelectrical activity |
title_short |
Exposure to 50 Hz electromagnetic field changes the efficiency of the scorpion alpha toxin |
title_full |
Exposure to 50 Hz electromagnetic field changes the efficiency of the scorpion alpha toxin |
title_fullStr |
Exposure to 50 Hz electromagnetic field changes the efficiency of the scorpion alpha toxin |
title_full_unstemmed |
Exposure to 50 Hz electromagnetic field changes the efficiency of the scorpion alpha toxin |
title_sort |
Exposure to 50 Hz electromagnetic field changes the efficiency of the scorpion alpha toxin |
author |
Jankowska,Milena |
author_facet |
Jankowska,Milena Pawlowska-Mainville,Agnieszka Stankiewicz,Maria Rogalska,Justyna Wyszkowska,Joanna |
author_role |
author |
author2 |
Pawlowska-Mainville,Agnieszka Stankiewicz,Maria Rogalska,Justyna Wyszkowska,Joanna |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Jankowska,Milena Pawlowska-Mainville,Agnieszka Stankiewicz,Maria Rogalska,Justyna Wyszkowska,Joanna |
dc.subject.por.fl_str_mv |
50 Hz electromagnetic field Alpha scorpion toxin Cockroach Bioelectrical activity |
topic |
50 Hz electromagnetic field Alpha scorpion toxin Cockroach Bioelectrical activity |
description |
AbstractBackground Extremely low-frequency (50 Hz) electromagnetic field (ELF-EMF) is produced by electric power transmission lines and electronic devices of everyday use. Some phenomena are proposed as “first effects” of ELF-EMF: the discrete changes in the membrane potential and the increase of the calcium channel activity as well as the intracellular concentration of Ca 2+ . Interaction of the scorpion alpha toxin with the sodium channel depends on the orientation of the charges and may be perturbed by changes in the membrane polarization. The toxin induces overexcitability in the nervous system and an increase in the neurotransmitters released with different consequences, mainly the paralysis of muscles. We assumed that the exposure to ELF-EMF 0.7 mT will change the effects of the insect selective scorpion alpha toxin (recombinant LqhαIT from Leiurus quinquestriatus hebraeus) at the level of the cercal nerve function, the synaptic transmission and on the level of entire insect organism. Taking into account the compensatory mechanisms in organisms, we tested in addition ten times higher ELF-EMF on whole insects.Methods Experiments were performed in vivo on cockroaches (Periplaneta americana) and in vitro – on isolated cockroach abdominal nerve cord with cerci. In biotests, the effects of LqhαIT (10 −8 M) were estimated on the basis of the insect ability to turn back from dorsal to ventral side. Three groups were compared: the control one and the two exposed to ELF-EMF – 0.7 and 7 mT. Bioelectrical activity of the cercal nerve and of the connective nerve that leaves the terminal abdominal ganglion was recorded using extracellular electrodes. LqhαIT (5 × 10 −8 M) induced modifications of neuronal activity that were observed in the control cockroach preparations and in the ones exposed to ELF-EMF (0.7 mT). The exposure to ELF-EMF was carried out using coils with a size appropriate to the examined objects.Results The exposure to ELF-EMF (0.7 mT) modified the effects of LqhαIT (5 × 10−8 M) on activity of the cercal nerve and of the connective nerve. We observed a decrease of the toxin effect on the cercal nerve activity, but the toxic effect of LqhαIT on the connective nerve was increased. Biotests showed that toxicity of LqhαIT (10 −8 M) on cockroaches was reduced by the exposure to ELF-EMF (0.7 and 7 mT).Conclusions The exposure to 50 Hz ELF-EMF modified the mode of action of the anti-insect scorpion alpha toxin LqhαIT at cellular level of the cockroach nervous system and in biotests. Toxin appeared as a usefull tool in distinguishing between the primary and the secondary effects of ELF-EMF. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992015000100344 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1678-91992015000100344 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1186/s40409-015-0040-9 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP) |
publisher.none.fl_str_mv |
Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP) |
dc.source.none.fl_str_mv |
Journal of Venomous Animals and Toxins including Tropical Diseases v.21 2015 reponame:The Journal of venomous animals and toxins including tropical diseases (Online) instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
The Journal of venomous animals and toxins including tropical diseases (Online) |
collection |
The Journal of venomous animals and toxins including tropical diseases (Online) |
repository.name.fl_str_mv |
The Journal of venomous animals and toxins including tropical diseases (Online) - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
||editorial@jvat.org.br |
_version_ |
1748958539995414528 |