EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION

Detalhes bibliográficos
Autor(a) principal: Ferreira, Francicleber Martins
Data de Publicação: 2015
Outros Autores: Martins, Ana Teresa
Tipo de documento: Artigo
Idioma: por
Título da fonte: Manuscrito (Online)
Texto Completo: https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8642019
Resumo: We investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is ∆- elementary, then it is elementary. That is, whenever the circumscription of a firstorder sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not ∆-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a firstorder sentence φ and whenever such class of P; Z-minimal models is ∆-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of φ is the class of models of φ ∧ ψ. In order words, the circumscription of P in φ with Z varied can be replaced by φ plus this explicit definition ψ for Pi.
id UNICAMP-17_4d46fd1d50bdd2b6a9bef75fbcd7f726
oai_identifier_str oai:ojs.periodicos.sbu.unicamp.br:article/8642019
network_acronym_str UNICAMP-17
network_name_str Manuscrito (Online)
repository_id_str
spelling EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTIONMinimal models. Circumscripition. Expressiveness. DefinabilityWe investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is ∆- elementary, then it is elementary. That is, whenever the circumscription of a firstorder sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not ∆-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a firstorder sentence φ and whenever such class of P; Z-minimal models is ∆-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of φ is the class of models of φ ∧ ψ. In order words, the circumscription of P in φ with Z varied can be replaced by φ plus this explicit definition ψ for Pi.Universidade Estadual de Campinas2015-11-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/x-emptyhttps://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8642019Manuscrito: Revista Internacional de Filosofia; v. 34 n. 1 (2011): Jan./Jun.; 233-266Manuscrito: International Journal of Philosophy; Vol. 34 No. 1 (2011): Jan./Jun.; 233-266Manuscrito: Revista Internacional de Filosofía; Vol. 34 Núm. 1 (2011): Jan./Jun.; 233-2662317-630Xreponame:Manuscrito (Online)instname:Universidade Estadual de Campinas (UNICAMP)instacron:UNICAMPporhttps://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8642019/9510Copyright (c) 2015 Manuscritoinfo:eu-repo/semantics/openAccessFerreira, Francicleber MartinsMartins, Ana Teresa2015-11-29T22:59:43Zoai:ojs.periodicos.sbu.unicamp.br:article/8642019Revistahttps://periodicos.sbu.unicamp.br/ojs/index.php/manuscritoPUBhttps://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/oaimwrigley@cle.unicamp.br|| dascal@spinoza.tau.ac.il||publicacoes@cle.unicamp.br2317-630X0100-6045opendoar:2015-11-29T22:59:43Manuscrito (Online) - Universidade Estadual de Campinas (UNICAMP)false
dc.title.none.fl_str_mv EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION
title EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION
spellingShingle EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION
Ferreira, Francicleber Martins
Minimal models. Circumscripition. Expressiveness. Definability
title_short EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION
title_full EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION
title_fullStr EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION
title_full_unstemmed EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION
title_sort EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION
author Ferreira, Francicleber Martins
author_facet Ferreira, Francicleber Martins
Martins, Ana Teresa
author_role author
author2 Martins, Ana Teresa
author2_role author
dc.contributor.author.fl_str_mv Ferreira, Francicleber Martins
Martins, Ana Teresa
dc.subject.por.fl_str_mv Minimal models. Circumscripition. Expressiveness. Definability
topic Minimal models. Circumscripition. Expressiveness. Definability
description We investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is ∆- elementary, then it is elementary. That is, whenever the circumscription of a firstorder sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not ∆-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a firstorder sentence φ and whenever such class of P; Z-minimal models is ∆-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of φ is the class of models of φ ∧ ψ. In order words, the circumscription of P in φ with Z varied can be replaced by φ plus this explicit definition ψ for Pi.
publishDate 2015
dc.date.none.fl_str_mv 2015-11-29
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8642019
url https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8642019
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8642019/9510
dc.rights.driver.fl_str_mv Copyright (c) 2015 Manuscrito
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2015 Manuscrito
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/x-empty
dc.publisher.none.fl_str_mv Universidade Estadual de Campinas
publisher.none.fl_str_mv Universidade Estadual de Campinas
dc.source.none.fl_str_mv Manuscrito: Revista Internacional de Filosofia; v. 34 n. 1 (2011): Jan./Jun.; 233-266
Manuscrito: International Journal of Philosophy; Vol. 34 No. 1 (2011): Jan./Jun.; 233-266
Manuscrito: Revista Internacional de Filosofía; Vol. 34 Núm. 1 (2011): Jan./Jun.; 233-266
2317-630X
reponame:Manuscrito (Online)
instname:Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
instname_str Universidade Estadual de Campinas (UNICAMP)
instacron_str UNICAMP
institution UNICAMP
reponame_str Manuscrito (Online)
collection Manuscrito (Online)
repository.name.fl_str_mv Manuscrito (Online) - Universidade Estadual de Campinas (UNICAMP)
repository.mail.fl_str_mv mwrigley@cle.unicamp.br|| dascal@spinoza.tau.ac.il||publicacoes@cle.unicamp.br
_version_ 1800216565294039040