EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Manuscrito (Online) |
Texto Completo: | https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8642019 |
Resumo: | We investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is ∆- elementary, then it is elementary. That is, whenever the circumscription of a firstorder sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not ∆-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a firstorder sentence φ and whenever such class of P; Z-minimal models is ∆-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of φ is the class of models of φ ∧ ψ. In order words, the circumscription of P in φ with Z varied can be replaced by φ plus this explicit definition ψ for Pi. |
id |
UNICAMP-17_4d46fd1d50bdd2b6a9bef75fbcd7f726 |
---|---|
oai_identifier_str |
oai:ojs.periodicos.sbu.unicamp.br:article/8642019 |
network_acronym_str |
UNICAMP-17 |
network_name_str |
Manuscrito (Online) |
repository_id_str |
|
spelling |
EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTIONMinimal models. Circumscripition. Expressiveness. DefinabilityWe investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is ∆- elementary, then it is elementary. That is, whenever the circumscription of a firstorder sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not ∆-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a firstorder sentence φ and whenever such class of P; Z-minimal models is ∆-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of φ is the class of models of φ ∧ ψ. In order words, the circumscription of P in φ with Z varied can be replaced by φ plus this explicit definition ψ for Pi.Universidade Estadual de Campinas2015-11-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/x-emptyhttps://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8642019Manuscrito: Revista Internacional de Filosofia; v. 34 n. 1 (2011): Jan./Jun.; 233-266Manuscrito: International Journal of Philosophy; Vol. 34 No. 1 (2011): Jan./Jun.; 233-266Manuscrito: Revista Internacional de Filosofía; Vol. 34 Núm. 1 (2011): Jan./Jun.; 233-2662317-630Xreponame:Manuscrito (Online)instname:Universidade Estadual de Campinas (UNICAMP)instacron:UNICAMPporhttps://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8642019/9510Copyright (c) 2015 Manuscritoinfo:eu-repo/semantics/openAccessFerreira, Francicleber MartinsMartins, Ana Teresa2015-11-29T22:59:43Zoai:ojs.periodicos.sbu.unicamp.br:article/8642019Revistahttps://periodicos.sbu.unicamp.br/ojs/index.php/manuscritoPUBhttps://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/oaimwrigley@cle.unicamp.br|| dascal@spinoza.tau.ac.il||publicacoes@cle.unicamp.br2317-630X0100-6045opendoar:2015-11-29T22:59:43Manuscrito (Online) - Universidade Estadual de Campinas (UNICAMP)false |
dc.title.none.fl_str_mv |
EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION |
title |
EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION |
spellingShingle |
EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION Ferreira, Francicleber Martins Minimal models. Circumscripition. Expressiveness. Definability |
title_short |
EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION |
title_full |
EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION |
title_fullStr |
EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION |
title_full_unstemmed |
EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION |
title_sort |
EXPRESSIVENESS AND DEFINABILITY IN CIRCUMSCRIPTION |
author |
Ferreira, Francicleber Martins |
author_facet |
Ferreira, Francicleber Martins Martins, Ana Teresa |
author_role |
author |
author2 |
Martins, Ana Teresa |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Ferreira, Francicleber Martins Martins, Ana Teresa |
dc.subject.por.fl_str_mv |
Minimal models. Circumscripition. Expressiveness. Definability |
topic |
Minimal models. Circumscripition. Expressiveness. Definability |
description |
We investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is ∆- elementary, then it is elementary. That is, whenever the circumscription of a firstorder sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not ∆-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a firstorder sentence φ and whenever such class of P; Z-minimal models is ∆-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of φ is the class of models of φ ∧ ψ. In order words, the circumscription of P in φ with Z varied can be replaced by φ plus this explicit definition ψ for Pi. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-11-29 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8642019 |
url |
https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8642019 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.sbu.unicamp.br/ojs/index.php/manuscrito/article/view/8642019/9510 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2015 Manuscrito info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2015 Manuscrito |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/x-empty |
dc.publisher.none.fl_str_mv |
Universidade Estadual de Campinas |
publisher.none.fl_str_mv |
Universidade Estadual de Campinas |
dc.source.none.fl_str_mv |
Manuscrito: Revista Internacional de Filosofia; v. 34 n. 1 (2011): Jan./Jun.; 233-266 Manuscrito: International Journal of Philosophy; Vol. 34 No. 1 (2011): Jan./Jun.; 233-266 Manuscrito: Revista Internacional de Filosofía; Vol. 34 Núm. 1 (2011): Jan./Jun.; 233-266 2317-630X reponame:Manuscrito (Online) instname:Universidade Estadual de Campinas (UNICAMP) instacron:UNICAMP |
instname_str |
Universidade Estadual de Campinas (UNICAMP) |
instacron_str |
UNICAMP |
institution |
UNICAMP |
reponame_str |
Manuscrito (Online) |
collection |
Manuscrito (Online) |
repository.name.fl_str_mv |
Manuscrito (Online) - Universidade Estadual de Campinas (UNICAMP) |
repository.mail.fl_str_mv |
mwrigley@cle.unicamp.br|| dascal@spinoza.tau.ac.il||publicacoes@cle.unicamp.br |
_version_ |
1800216565294039040 |