Expressiveness and definability in circumscription
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Manuscrito (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-60452011000100011 |
Resumo: | We investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is Δ-elementary, then it is elementary. That is, whenever the circumscription of a first-order sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not Δ-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a first-order sentence Φ and whenever such class of P; Z-minimal models is Δ-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of Φ is the class of models of Φ ∧ ψ. In order words, the circumscription of P in Φ with Z varied can be replaced by Φ plus this explicit definition ψ for Pi. |
id |
UNICAMP-17_a88e78e663ee936f7456f2282f738833 |
---|---|
oai_identifier_str |
oai:scielo:S0100-60452011000100011 |
network_acronym_str |
UNICAMP-17 |
network_name_str |
Manuscrito (Online) |
repository_id_str |
|
spelling |
Expressiveness and definability in circumscriptionMinimal modelsCircumscripitionExpressivenessDefinabilityWe investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is Δ-elementary, then it is elementary. That is, whenever the circumscription of a first-order sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not Δ-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a first-order sentence Φ and whenever such class of P; Z-minimal models is Δ-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of Φ is the class of models of Φ ∧ ψ. In order words, the circumscription of P in Φ with Z varied can be replaced by Φ plus this explicit definition ψ for Pi.UNICAMP - Universidade Estadual de Campinas, Centro de Lógica, Epistemologia e História da Ciência2011-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-60452011000100011Manuscrito v.34 n.1 2011reponame:Manuscrito (Online)instname:Universidade Estadual de Campinas (UNICAMP)instacron:UNICAMP10.1590/S0100-60452011000100011info:eu-repo/semantics/openAccessFerreira,Francicleber MartinsMartins,Ana Teresaeng2012-07-31T00:00:00Zoai:scielo:S0100-60452011000100011Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-6045&lng=pt&nrm=isoPUBhttps://old.scielo.br/oai/scielo-oai.phpmwrigley@cle.unicamp.br|| dascal@spinoza.tau.ac.il||publicacoes@cle.unicamp.br2317-630X0100-6045opendoar:2012-07-31T00:00Manuscrito (Online) - Universidade Estadual de Campinas (UNICAMP)false |
dc.title.none.fl_str_mv |
Expressiveness and definability in circumscription |
title |
Expressiveness and definability in circumscription |
spellingShingle |
Expressiveness and definability in circumscription Ferreira,Francicleber Martins Minimal models Circumscripition Expressiveness Definability |
title_short |
Expressiveness and definability in circumscription |
title_full |
Expressiveness and definability in circumscription |
title_fullStr |
Expressiveness and definability in circumscription |
title_full_unstemmed |
Expressiveness and definability in circumscription |
title_sort |
Expressiveness and definability in circumscription |
author |
Ferreira,Francicleber Martins |
author_facet |
Ferreira,Francicleber Martins Martins,Ana Teresa |
author_role |
author |
author2 |
Martins,Ana Teresa |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Ferreira,Francicleber Martins Martins,Ana Teresa |
dc.subject.por.fl_str_mv |
Minimal models Circumscripition Expressiveness Definability |
topic |
Minimal models Circumscripition Expressiveness Definability |
description |
We investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is Δ-elementary, then it is elementary. That is, whenever the circumscription of a first-order sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not Δ-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a first-order sentence Φ and whenever such class of P; Z-minimal models is Δ-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of Φ is the class of models of Φ ∧ ψ. In order words, the circumscription of P in Φ with Z varied can be replaced by Φ plus this explicit definition ψ for Pi. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-60452011000100011 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-60452011000100011 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0100-60452011000100011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
UNICAMP - Universidade Estadual de Campinas, Centro de Lógica, Epistemologia e História da Ciência |
publisher.none.fl_str_mv |
UNICAMP - Universidade Estadual de Campinas, Centro de Lógica, Epistemologia e História da Ciência |
dc.source.none.fl_str_mv |
Manuscrito v.34 n.1 2011 reponame:Manuscrito (Online) instname:Universidade Estadual de Campinas (UNICAMP) instacron:UNICAMP |
instname_str |
Universidade Estadual de Campinas (UNICAMP) |
instacron_str |
UNICAMP |
institution |
UNICAMP |
reponame_str |
Manuscrito (Online) |
collection |
Manuscrito (Online) |
repository.name.fl_str_mv |
Manuscrito (Online) - Universidade Estadual de Campinas (UNICAMP) |
repository.mail.fl_str_mv |
mwrigley@cle.unicamp.br|| dascal@spinoza.tau.ac.il||publicacoes@cle.unicamp.br |
_version_ |
1748950064864165888 |