Expressiveness and definability in circumscription

Detalhes bibliográficos
Autor(a) principal: Ferreira,Francicleber Martins
Data de Publicação: 2011
Outros Autores: Martins,Ana Teresa
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Manuscrito (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-60452011000100011
Resumo: We investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is Δ-elementary, then it is elementary. That is, whenever the circumscription of a first-order sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not Δ-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a first-order sentence Φ and whenever such class of P; Z-minimal models is Δ-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of Φ is the class of models of Φ ∧ ψ. In order words, the circumscription of P in Φ with Z varied can be replaced by Φ plus this explicit definition ψ for Pi.
id UNICAMP-17_a88e78e663ee936f7456f2282f738833
oai_identifier_str oai:scielo:S0100-60452011000100011
network_acronym_str UNICAMP-17
network_name_str Manuscrito (Online)
repository_id_str
spelling Expressiveness and definability in circumscriptionMinimal modelsCircumscripitionExpressivenessDefinabilityWe investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is Δ-elementary, then it is elementary. That is, whenever the circumscription of a first-order sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not Δ-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a first-order sentence Φ and whenever such class of P; Z-minimal models is Δ-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of Φ is the class of models of Φ ∧ ψ. In order words, the circumscription of P in Φ with Z varied can be replaced by Φ plus this explicit definition ψ for Pi.UNICAMP - Universidade Estadual de Campinas, Centro de Lógica, Epistemologia e História da Ciência2011-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-60452011000100011Manuscrito v.34 n.1 2011reponame:Manuscrito (Online)instname:Universidade Estadual de Campinas (UNICAMP)instacron:UNICAMP10.1590/S0100-60452011000100011info:eu-repo/semantics/openAccessFerreira,Francicleber MartinsMartins,Ana Teresaeng2012-07-31T00:00:00Zoai:scielo:S0100-60452011000100011Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=0100-6045&lng=pt&nrm=isoPUBhttps://old.scielo.br/oai/scielo-oai.phpmwrigley@cle.unicamp.br|| dascal@spinoza.tau.ac.il||publicacoes@cle.unicamp.br2317-630X0100-6045opendoar:2012-07-31T00:00Manuscrito (Online) - Universidade Estadual de Campinas (UNICAMP)false
dc.title.none.fl_str_mv Expressiveness and definability in circumscription
title Expressiveness and definability in circumscription
spellingShingle Expressiveness and definability in circumscription
Ferreira,Francicleber Martins
Minimal models
Circumscripition
Expressiveness
Definability
title_short Expressiveness and definability in circumscription
title_full Expressiveness and definability in circumscription
title_fullStr Expressiveness and definability in circumscription
title_full_unstemmed Expressiveness and definability in circumscription
title_sort Expressiveness and definability in circumscription
author Ferreira,Francicleber Martins
author_facet Ferreira,Francicleber Martins
Martins,Ana Teresa
author_role author
author2 Martins,Ana Teresa
author2_role author
dc.contributor.author.fl_str_mv Ferreira,Francicleber Martins
Martins,Ana Teresa
dc.subject.por.fl_str_mv Minimal models
Circumscripition
Expressiveness
Definability
topic Minimal models
Circumscripition
Expressiveness
Definability
description We investigate expressiveness and definability issues with respect to minimal models, particularly in the scope of Circumscription. First, we give a proof of the failure of the Löwenheim-Skolem Theorem for Circumscription. Then we show that, if the class of P; Z-minimal models of a first-order sentence is Δ-elementary, then it is elementary. That is, whenever the circumscription of a first-order sentence is equivalent to a first-order theory, then it is equivalent to a finitely axiomatizable one. This means that classes of models of circumscribed theories are either elementary or not Δ-elementary. Finally, using the previous result, we prove that, whenever a relation Pi is defined in the class of P; Z-minimal models of a first-order sentence Φ and whenever such class of P; Z-minimal models is Δ-elementary, then there is an explicit definition ψ for Pi such that the class of P; Z-minimal models of Φ is the class of models of Φ ∧ ψ. In order words, the circumscription of P in Φ with Z varied can be replaced by Φ plus this explicit definition ψ for Pi.
publishDate 2011
dc.date.none.fl_str_mv 2011-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-60452011000100011
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-60452011000100011
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0100-60452011000100011
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv UNICAMP - Universidade Estadual de Campinas, Centro de Lógica, Epistemologia e História da Ciência
publisher.none.fl_str_mv UNICAMP - Universidade Estadual de Campinas, Centro de Lógica, Epistemologia e História da Ciência
dc.source.none.fl_str_mv Manuscrito v.34 n.1 2011
reponame:Manuscrito (Online)
instname:Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
instname_str Universidade Estadual de Campinas (UNICAMP)
instacron_str UNICAMP
institution UNICAMP
reponame_str Manuscrito (Online)
collection Manuscrito (Online)
repository.name.fl_str_mv Manuscrito (Online) - Universidade Estadual de Campinas (UNICAMP)
repository.mail.fl_str_mv mwrigley@cle.unicamp.br|| dascal@spinoza.tau.ac.il||publicacoes@cle.unicamp.br
_version_ 1748950064864165888