Coordenadas Fricke e empacotamentos hiperbolicos de discos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2005 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) |
Texto Completo: | https://hdl.handle.net/20.500.12733/1599345 |
Resumo: | Orientador : Marcelo Firer |
id |
UNICAMP-30_a3d6b4260d6687587b352cfd2886922d |
---|---|
oai_identifier_str |
oai::333567 |
network_acronym_str |
UNICAMP-30 |
network_name_str |
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) |
repository_id_str |
|
spelling |
Coordenadas Fricke e empacotamentos hiperbolicos de discosGeometria hiperbólicaEmpacotamento e cobertura combinatóriaGrupos discretos (Matemática)Superfícies de RiemannEspaços de TeichmullerOrientador : Marcelo FirerTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação CientificaResumo: Este trabalho busca elementos para se determinar a densidade de empacotamento de esferas definida por reticulados no plano hiperbólico.Consideramos o espaço de teichmuller Tu de todas as superfícies orientadas com-pactas e fechadas de gênero 9 2: 2, as quais tem o plano hiperbólico como recobrimento universal riemanniano. É conhecido o sistema de coordenadas Fricke em Tu que associa a cada superfície um domínio fundamental de Voronoi-Dirichlet dado por um polígono convexo com 4g arestas. Sabemos que, fixado o gênero, a densidade cresce com o número de arestas do domínio de Voronoi-Dirichlet escolhido, de modo que é natural a busca por polígonos com um número máximo de arestas associado ao gênero dado, que é sempre limitado por 12g - 6.Neste trabalho, determinamos as coordenadas Fricke em Tu que associa a cada su-perfície um domínio de Voronoi-Dirichlet com 4g + 2 e 12g - 6 arestas. Além disso, determinamos e implementamos algoritmos para a determinação dos círculos inscrito e circunscrito de um polígono (em superfícies de curvatura constante). Estes algorit-mos, em sua generalidade tem complexidade O (n4) mas, restringindo os polígonos a vizinhanças abertas de um polígono dado, possui complexidade O (n), situação ótima.A determinação dos domínios de Voronoi-Dirichlet e dos círculos inscritos permitem definir a densidade de empacotamento diretamente nos espaços de teichmuller através de um sistema de equações polinomiaisAbstract: This work searches elements to determine the packing density of spheres defined by lattices in the hyperbolic plane. We consider the teichmüller space Tg of all closed compacts oriented surfaces of genus 9 ~ 2, which has the hyperbolic plane as universal covering rienmannian surface. It is known that the system of Fricke coordinates in Tg associates each surface to a fundamental of Voronoi-Dirichlet domain, given by convex polygon with 49 edges. We know that, with fixed genus, the density increases with the number of edges of the chosen Voronoi-Dirichlet domain. Thus it is naturallooking for polygons with a maximum number of edges associated to a given genus, which is always limited by 129 - 6.In this work, we determine Fricke coordinates in Tg which associates each surface to a Voronoi-Dirichlet domain with 49 + 2 and 129 - 6 edges. Furthermore, we determine and we program the algorithms for determination of the inscribed and circumscribed circles of a polygon (in surfaces of constant curvature). These algorithms, have com-plexity O (n4) , but when restricted to open neighbourhoods of a given polygon, have complexity O (n), best situation.The determination of the Voronoi-Dirichlet domain from the inscribed circles per-mits to define the packing of density directly on teichmüller spaces through a polyno-mials of system equationsDoutoradoMatemáticaDoutor em Matemática[s.n.]Firer, Marcelo, 1961-Roccio, Osvaldo Germano doMoraes, Simone Maria dePalazzo Júnior, ReginaldoCatuogno, Pedro JoseUniversidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação CientíficaPrograma de Pós-Graduação em MatemáticaUNIVERSIDADE ESTADUAL DE CAMPINASFaria, Mercio Botelho, 1975-20052005-07-03T00:00:00Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdf148 p. : il + + 1 CD-ROM.(Broch.)https://hdl.handle.net/20.500.12733/1599345FARIA, Mercio Botelho. Coordenadas Fricke e empacotamentos hiperbolicos de discos. 2005. 148 p. Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica, Campinas, SP. Disponível em: https://hdl.handle.net/20.500.12733/1599345. Acesso em: 2 set. 2024.https://repositorio.unicamp.br/acervo/detalhe/333567porreponame:Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP)instname:Universidade Estadual de Campinas (UNICAMP)instacron:UNICAMPinfo:eu-repo/semantics/openAccess2022-09-13T14:50:59Zoai::333567Biblioteca Digital de Teses e DissertaçõesPUBhttp://repositorio.unicamp.br/oai/tese/oai.aspsbubd@unicamp.bropendoar:2022-09-13T14:50:59Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) - Universidade Estadual de Campinas (UNICAMP)false |
dc.title.none.fl_str_mv |
Coordenadas Fricke e empacotamentos hiperbolicos de discos |
title |
Coordenadas Fricke e empacotamentos hiperbolicos de discos |
spellingShingle |
Coordenadas Fricke e empacotamentos hiperbolicos de discos Faria, Mercio Botelho, 1975- Geometria hiperbólica Empacotamento e cobertura combinatória Grupos discretos (Matemática) Superfícies de Riemann Espaços de Teichmuller |
title_short |
Coordenadas Fricke e empacotamentos hiperbolicos de discos |
title_full |
Coordenadas Fricke e empacotamentos hiperbolicos de discos |
title_fullStr |
Coordenadas Fricke e empacotamentos hiperbolicos de discos |
title_full_unstemmed |
Coordenadas Fricke e empacotamentos hiperbolicos de discos |
title_sort |
Coordenadas Fricke e empacotamentos hiperbolicos de discos |
author |
Faria, Mercio Botelho, 1975- |
author_facet |
Faria, Mercio Botelho, 1975- |
author_role |
author |
dc.contributor.none.fl_str_mv |
Firer, Marcelo, 1961- Roccio, Osvaldo Germano do Moraes, Simone Maria de Palazzo Júnior, Reginaldo Catuogno, Pedro Jose Universidade Estadual de Campinas (UNICAMP). Instituto de Matemática, Estatística e Computação Científica Programa de Pós-Graduação em Matemática UNIVERSIDADE ESTADUAL DE CAMPINAS |
dc.contributor.author.fl_str_mv |
Faria, Mercio Botelho, 1975- |
dc.subject.por.fl_str_mv |
Geometria hiperbólica Empacotamento e cobertura combinatória Grupos discretos (Matemática) Superfícies de Riemann Espaços de Teichmuller |
topic |
Geometria hiperbólica Empacotamento e cobertura combinatória Grupos discretos (Matemática) Superfícies de Riemann Espaços de Teichmuller |
description |
Orientador : Marcelo Firer |
publishDate |
2005 |
dc.date.none.fl_str_mv |
2005 2005-07-03T00:00:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
(Broch.) https://hdl.handle.net/20.500.12733/1599345 FARIA, Mercio Botelho. Coordenadas Fricke e empacotamentos hiperbolicos de discos. 2005. 148 p. Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica, Campinas, SP. Disponível em: https://hdl.handle.net/20.500.12733/1599345. Acesso em: 2 set. 2024. |
identifier_str_mv |
(Broch.) FARIA, Mercio Botelho. Coordenadas Fricke e empacotamentos hiperbolicos de discos. 2005. 148 p. Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica, Campinas, SP. Disponível em: https://hdl.handle.net/20.500.12733/1599345. Acesso em: 2 set. 2024. |
url |
https://hdl.handle.net/20.500.12733/1599345 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://repositorio.unicamp.br/acervo/detalhe/333567 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf 148 p. : il + + 1 CD-ROM. |
dc.publisher.none.fl_str_mv |
[s.n.] |
publisher.none.fl_str_mv |
[s.n.] |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) instname:Universidade Estadual de Campinas (UNICAMP) instacron:UNICAMP |
instname_str |
Universidade Estadual de Campinas (UNICAMP) |
instacron_str |
UNICAMP |
institution |
UNICAMP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) |
collection |
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da Universidade Estadual de Campinas (UNICAMP) - Universidade Estadual de Campinas (UNICAMP) |
repository.mail.fl_str_mv |
sbubd@unicamp.br |
_version_ |
1809188918475620352 |