Imunoterapia e suas estratégias vacinais contra o câncer: uma revisão bibliográfica.

Detalhes bibliográficos
Autor(a) principal: Silva, Analu Antônia da
Data de Publicação: 2020
Outros Autores: Antunes, Hosenilde Rodrigues, Silva, Laíse Tôrres da
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da Universidade Cruzeiro do Sul
Texto Completo: https://repositorio.cruzeirodosul.edu.br/handle/123456789/1513
Resumo: As estratégias vacinais de imunoterapia têm gerado expectativas, uma vez que são consideradas terapias específicas, voltadas para a ativação do próprio sistema imunológico no combate às células cancerosas. Visando reunir informações sobre estas estratégias, foi realizada uma revisão bibliográfica contemplando as pesquisas em desenvolvimento no período de 2010 a 2020 no indexador Google Scholar. Foram encontrados 102 estudos e selecionados 33, contemplando diversos tipos de estratégias vacinais, bem como variados cânceres. A imunoterapia vacinal tem se mostrado promissora, mas há um consenso sobre a necessidade de mais estudos na área, bem como associações a outras formas de tratamentos, visando maximizar os resultados.
id UNICSUL-1_6bc8f044ab29c8e6ee038e34648484d9
oai_identifier_str oai:repositorio.cruzeirodosul.edu.br:123456789/1513
network_acronym_str UNICSUL-1
network_name_str Repositório Institucional da Universidade Cruzeiro do Sul
repository_id_str
spelling 2021-02-11T18:55:52Z2021-02-112021-02-11T18:55:52Z2020https://repositorio.cruzeirodosul.edu.br/handle/123456789/1513As estratégias vacinais de imunoterapia têm gerado expectativas, uma vez que são consideradas terapias específicas, voltadas para a ativação do próprio sistema imunológico no combate às células cancerosas. Visando reunir informações sobre estas estratégias, foi realizada uma revisão bibliográfica contemplando as pesquisas em desenvolvimento no período de 2010 a 2020 no indexador Google Scholar. Foram encontrados 102 estudos e selecionados 33, contemplando diversos tipos de estratégias vacinais, bem como variados cânceres. A imunoterapia vacinal tem se mostrado promissora, mas há um consenso sobre a necessidade de mais estudos na área, bem como associações a outras formas de tratamentos, visando maximizar os resultados.Vaccine immunotherapy strategies have generated expectations, since they are considered specific therapies, aimed at activating the immune system itself to fight cancer cells. Aiming to gather information about these strategies, a bibliographic review was carried out covering research under development in the period from 2010 to 2020 in the Google Scholar index. 102 studies were found and 33 were selected, covering several types of vaccination strategies, as well as various cancers. Vaccine immunotherapy has shown promise, but there is a consensus on the need for further studies in the area, as well as associations with other forms of treatments, in order to maximize resultsporCentro de ensino Unificado do Distrito FederalUDFBrasilCoordenação do Curso de Biomedicina9.06.00.00-2 BiomedicinaCâncerVacinaImunoterapiaImunoterapia e suas estratégias vacinais contra o câncer: uma revisão bibliográfica.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisGomes, Helder Andrey Rochahttp://lattes.cnpq.br/4972382847829089...Silva, Analu Antônia daAntunes, Hosenilde RodriguesSilva, Laíse Tôrres daOliveira Santos, M. Estimativa/2020 – Incidência de Câncer no Brasil. Revista Brasileira de Cancerologia, (2020). 66(1). 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. 3. Zhang H, Chen J. Current status and future directions of cancer immunotherapy. J Cancer. 2018; 9(10):1773–81. 4. Ventola CL. Cancer Immunotherapy, Part 1: Current Strategies and Agents. P & T : a peer-reviewed journal for formulary management, 2017;42(6), 375–383. 5. Stevenson FK, Ottensmeier CH, Rice J. DNA vaccines against cancer come of age. Curr Opin Immunol. 2010;22(2):264–70. 6. Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. mRNA vaccines - a new era in vaccinology. Nature reviews. Drug discovery, 2018; 17(4), 261–279. 7. Maeng HM, Berzofsky JA. Strategies for developing and optimizing cancer vaccines. F1000Research. 2019;8:1–14. 8. Hogervorst TP, Li RJE, Marino L, Bruijns SCM, Meeuwenoord NJ, Filippov D V., et al. C-Mannosyl Lysine for Solid Phase Assembly of Mannosylated Peptide Conjugate Cancer Vaccines. ACS Chem Biol. 2020;15(3):728–39. 9. Majhen, D., Calderon, H., Chandra, N., Fajardo, C. A., Rajan, A., Alemany, R., & Custers, J. Adenovirus-based vaccines for fighting infectious diseases and cancer: progress in the field. Human gene therapy, 2014;25(4), 301–317. 10. Bencherif SA, Sands RW, Ali OA, Li WA, Lewin SA, Braschler TM, et al. Injectable cryogel-based whole-cell cancer vaccines. Nat Commun. 2015;6. 11. Sharbi-Yunger A, Grees M, Cafri G, Bassan D, Eichmüller SB, Tzehoval E, et CADERNO DE CIÊNCIAS DA SAÚDE E DA VIDA 20 al. A universal anti-cancer vaccine: Chimeric invariant chain potentiates the inhibition of melanoma progression and the improvement of survival. Int J Cancer. 2019;144(4):909–21. 12. Qiu Z, Huang H, Grenier JM, Perez OA, Smilowitz HM, Adler B, et al. Cytomegalovirus-based vaccine expressing a modified tumor antigen induces potent tumor-specific CD8+ T-cell response and protects mice from melanoma. Cancer Immunol Res. 2015;3(5):536–46. 13. Charles J, Chaperot L, Hannani D, Bruder Costa J, Templier I, Trabelsi S, et al. An innovative plasmacytoid dendritic cell line-based cancer vaccine primes and expands antitumor T-cells in melanoma patients in a first-in-human trial. Oncoimmunology. 2020;9. 14. Hussein WM, Liu TY, Jia Z, McMillan NAJ, Monteiro MJ, Toth I, et al. Multiantigenic peptide–polymer conjugates as therapeutic vaccines against cervical cancer. Bioorganic Med Chem 2016;24(18):4372–80. 15. Ngan HYS, Cheung ANY, Tam KF, Chan KKL, Tang HW, Bi D, et al. Human papillomavirus-16/18 AS04-adjuvanted cervical cancer vaccine: Immunogenicity and safety in healthy Chinese women from Hong Kong. Hong Kong Med J. 2010;16(3):171–9. 16. Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenesexpressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol. 2015;33(12):1325–33. 17. Miyazawa M, Katsuda M, Maguchi H, Katanuma A, Ishii H, Ozaka M, et al. Phase II clinical trial using novel peptide cocktail vaccine as a postoperative adjuvant treatment for surgically resected pancreatic cancer patients. Int J Cancer. 2017;140(4):973–82. 18. Oudard S, Rixe O, Beuselinck B, Linassier C, Banu E, MacHiels JP, et al. A phase II study of the cancer vaccine TG4010 alone and in combination with cytokines in patients with metastatic renal clear-cell carcinoma: Clinical and immunological findings. Cancer Immunol Immunother. 2011;60(2):261–71. 19. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18(8):1254–61. 20. Dillon PM, Petroni GR, Smolkin ME, Brenin DR, Chianese-Bullock KA, Smith KT, et al. A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-ICLC in early stage breast cancer. J Immunother Cancer. CADERNO DE CIÊNCIAS DA SAÚDE E DA VIDA 20 2017;5(1):1–10. 21. Razazan A, Behravan J, Arab A, Barati N, Arabi L, Gholizadeh Z, et al. Conjugated nanoliposome with the HER2/ neu-derived peptide GP2 as an effective vaccine against breast cancer in mice xenograft model. PLoS One. 2017;12(10):1–22. 22. Holmes JP, Clifton GT, Patil R, Benavides LC, Gates JD, Stojadinovic A, et al. Use of booster inoculations to sustain the clinical effect of an adjuvant breast cancer vaccine. Cancer. 2011;117(3):463–71. 23. Chablani, L., Tawde, S. A., Akalkotkar, A., D'Souza, C., Selvaraj, P., & D'Souza, M. J. Formulation and evaluation of a particulate oral breast cancer vaccine. Journal of pharmaceutical sciences, 2012;101(10), 3661–3671. 24. Kwilas AR, Ardiani A, Dirmeier U, Wottawah C, Schlom J, Hodge JW. A poxviral-based cancer vaccine targeting the transcription factor twist inhibits primary tumor growth and metastases in a model of metastatic breast cancer and improves survival in a spontaneous prostate cancer model. Oncotarget. 2015;6(29):28194–210. 25. Soliman H, Khambati F, Han HS, Ismail-Khan R, Bui MM, Sullivan DM, et al. A phase-1/2 study of adenovirus-p53 transduced dendritic cell vaccine in combination with indoximod in metastatic solid tumors and invasive breast cancer. Oncotarget. 2018;9(11):10110–7. 26. Tomasicchio M, Semple L, Esmail A, Meldau R, Randall P, Pooran A, et al. An autologous dendritic cell vaccine polarizes a Th-1 response which is tumoricidal to patient-derived breast cancer cells. Cancer Immunol Immunother. 2019;68(1):71–83. 27. Xia Q, Zhang FF, Geng F, Liu CL, Xu P, Lu ZZ, et al. Anti-tumor effects of DNA vaccine targeting human fibroblast activation protein α by producing specific immune responses and altering tumor microenvironment in the 4T1 murine breast cancer model. Cancer Immunol Immunother. 2016;65(5):613–24. 28. Gheybi E, Salmanian AH, Fooladi AAI, Salimian J, Hosseini HM, Halabian R, et al. Immunogenicity of chimeric MUC1-HER2 vaccine against breast cancer in mice. Iran J Basic Med Sci. 2018;21(1):26–32. 29. Liu Y, Tang L, Gao N, Diao Y, Zhong J, Deng Y, et al. Synthetic MUC1 breast cancer vaccine containing a Toll.like receptor 7 agonist exerts antitumor effects. Oncol Lett. 2020;20(3):2369–77. CADERNO DE CIÊNCIAS DA SAÚDE E DA VIDA 20 30. Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med. 2018;10(436):1–15. 31. Mookerjee A, Graciotti M, Kandalaft L. A cancer vaccine with dendritic cells differentiated with GM-CSF and IFNα and pulsed with a squaric acid treated cell lysate improves T cell priming and tumor growth control in a mouse model. BioImpacts [Internet]. 2018;8(3):211–21. 32. Tawde SA, Chablani L, Akalkotkar A, D’Souza MJ. Evaluation of microparticulate ovarian cancer vaccine via transdermal route of delivery. J Control Release [Internet]. 2016;235:147–54. 33. Sabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C, Tuballes K, et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res. 2012;18(23):6497–508. 34. Wu D, Wang J, Cai Y, Ren M, Zhang Y, Shi F, et al. Effect of targeted ovarian cancer immunotherapy using ovarian cancer stem cell vaccine. J Ovarian Res. 2015;8(1):1–10. 35. Wu D, Yu X, Wang J, Hui X, Zhang Y, Cai Y, et al. Ovarian cancer stem cells with high ROR1 expression serve as a new prophylactic vaccine for ovarian cancer. J Immunol Res. 2019;2019. 36. Cappuccini F, Stribbling S, Pollock E, Hill AVS, Redchenko I. Immunogenicity and efficacy of the novel cancer vaccine based on simian adenovirus and MVA vectors alone and in combination with PD-1 mAb in a mouse model of prostate cancer. Cancer Immunol Immunother. 2016;65(6):701–13. 37. Akalkotkar, A., Chablani, L., Tawde, S. A., D'Souza, C., & D'Souza, M. J. Development of a microparticulate prostate cancer vaccine and evaluating the effect of route of administration on its efficacy via the skin. Journal of microencapsulation, 2015;32(3), 281–289. 38. Becker JT, Olson BM, Johnson LE, Davies JG, Dunphy EJ, McNeel DG. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J Immunother. 2010;33(6):639–47. 39. Kantoff PW, Schuetz TJ, Blumenstein BA, Michael Glode L, Bilhartz DL, Wyand M, et al. Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castrationresistant prostate cancer. J Clin Oncol. 2010;28(7):1099–105. CADERNO DE CIÊNCIAS DA SAÚDE E DA VIDA 20 40. Berinstein NL, Karkada M, Morse MA, Nemunaitis JJ, Chatta G, Kaufman H, et al. First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients. J Transl Med. 2012;10(1):1–12. 41. Kindy MS, Yu J, Zhu H, Smith MT, Gattoni-Celli S. A therapeutic cancer vaccine against GL261 murine glioma. J Transl Med. 2016;14(1):1–9. 42. Saito T, Wada H, Yamasaki M, Miyata H, Nishikawa H, Sato E, et al. High expression of MAGE-A4 and MHC class I antigens in tumor cells and induction of MAGE-A4 immune responses are prognostic markers of CHP-MAGE-A4 cancer vaccine. Vaccine. 2014;32(45):5901–7. 43. Goutsouliak K, Veeraraghavan J, Sethunath V, De Angelis C, Osborne CK, Rimawi MF, et al. Towards personalized treatment for early stage HER2positive breast cancer. Nat Rev Clin Oncol. 2020;17(4):233–50.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Cruzeiro do Sulinstname:Universidade Cruzeiro do Sul (UNICSUL)instacron:UNICSULORIGINALTCC VACINAS CANCER.pdfTCC VACINAS CANCER.pdfapplication/pdf636261http://dev.siteworks.com.br:8080/jspui/bitstream/123456789/1513/1/TCC%20VACINAS%20CANCER.pdf74dcddc9271bfd624d12ae1dbdc20639MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://dev.siteworks.com.br:8080/jspui/bitstream/123456789/1513/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52123456789/15132021-02-11 16:04:09.599oai:repositorio.cruzeirodosul.edu.br:123456789/1513Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPRIhttps://repositorio.cruzeirodosul.edu.br/oai/requestmary.pela@unicid.edu.bropendoar:2021-02-11T19:04:09Repositório Institucional da Universidade Cruzeiro do Sul - Universidade Cruzeiro do Sul (UNICSUL)false
dc.title.pt_BR.fl_str_mv Imunoterapia e suas estratégias vacinais contra o câncer: uma revisão bibliográfica.
title Imunoterapia e suas estratégias vacinais contra o câncer: uma revisão bibliográfica.
spellingShingle Imunoterapia e suas estratégias vacinais contra o câncer: uma revisão bibliográfica.
Silva, Analu Antônia da
9.06.00.00-2 Biomedicina
Câncer
Vacina
Imunoterapia
title_short Imunoterapia e suas estratégias vacinais contra o câncer: uma revisão bibliográfica.
title_full Imunoterapia e suas estratégias vacinais contra o câncer: uma revisão bibliográfica.
title_fullStr Imunoterapia e suas estratégias vacinais contra o câncer: uma revisão bibliográfica.
title_full_unstemmed Imunoterapia e suas estratégias vacinais contra o câncer: uma revisão bibliográfica.
title_sort Imunoterapia e suas estratégias vacinais contra o câncer: uma revisão bibliográfica.
author Silva, Analu Antônia da
author_facet Silva, Analu Antônia da
Antunes, Hosenilde Rodrigues
Silva, Laíse Tôrres da
author_role author
author2 Antunes, Hosenilde Rodrigues
Silva, Laíse Tôrres da
author2_role author
author
dc.contributor.advisor1.fl_str_mv Gomes, Helder Andrey Rocha
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4972382847829089
dc.contributor.authorLattes.fl_str_mv ...
dc.contributor.author.fl_str_mv Silva, Analu Antônia da
Antunes, Hosenilde Rodrigues
Silva, Laíse Tôrres da
contributor_str_mv Gomes, Helder Andrey Rocha
dc.subject.cnpq.fl_str_mv 9.06.00.00-2 Biomedicina
topic 9.06.00.00-2 Biomedicina
Câncer
Vacina
Imunoterapia
dc.subject.por.fl_str_mv Câncer
Vacina
Imunoterapia
description As estratégias vacinais de imunoterapia têm gerado expectativas, uma vez que são consideradas terapias específicas, voltadas para a ativação do próprio sistema imunológico no combate às células cancerosas. Visando reunir informações sobre estas estratégias, foi realizada uma revisão bibliográfica contemplando as pesquisas em desenvolvimento no período de 2010 a 2020 no indexador Google Scholar. Foram encontrados 102 estudos e selecionados 33, contemplando diversos tipos de estratégias vacinais, bem como variados cânceres. A imunoterapia vacinal tem se mostrado promissora, mas há um consenso sobre a necessidade de mais estudos na área, bem como associações a outras formas de tratamentos, visando maximizar os resultados.
publishDate 2020
dc.date.issued.fl_str_mv 2020
dc.date.accessioned.fl_str_mv 2021-02-11T18:55:52Z
dc.date.available.fl_str_mv 2021-02-11
2021-02-11T18:55:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.cruzeirodosul.edu.br/handle/123456789/1513
url https://repositorio.cruzeirodosul.edu.br/handle/123456789/1513
dc.language.iso.fl_str_mv por
language por
dc.relation.references.none.fl_str_mv Oliveira Santos, M. Estimativa/2020 – Incidência de Câncer no Brasil. Revista Brasileira de Cancerologia, (2020). 66(1). 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. 3. Zhang H, Chen J. Current status and future directions of cancer immunotherapy. J Cancer. 2018; 9(10):1773–81. 4. Ventola CL. Cancer Immunotherapy, Part 1: Current Strategies and Agents. P & T : a peer-reviewed journal for formulary management, 2017;42(6), 375–383. 5. Stevenson FK, Ottensmeier CH, Rice J. DNA vaccines against cancer come of age. Curr Opin Immunol. 2010;22(2):264–70. 6. Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. mRNA vaccines - a new era in vaccinology. Nature reviews. Drug discovery, 2018; 17(4), 261–279. 7. Maeng HM, Berzofsky JA. Strategies for developing and optimizing cancer vaccines. F1000Research. 2019;8:1–14. 8. Hogervorst TP, Li RJE, Marino L, Bruijns SCM, Meeuwenoord NJ, Filippov D V., et al. C-Mannosyl Lysine for Solid Phase Assembly of Mannosylated Peptide Conjugate Cancer Vaccines. ACS Chem Biol. 2020;15(3):728–39. 9. Majhen, D., Calderon, H., Chandra, N., Fajardo, C. A., Rajan, A., Alemany, R., & Custers, J. Adenovirus-based vaccines for fighting infectious diseases and cancer: progress in the field. Human gene therapy, 2014;25(4), 301–317. 10. Bencherif SA, Sands RW, Ali OA, Li WA, Lewin SA, Braschler TM, et al. Injectable cryogel-based whole-cell cancer vaccines. Nat Commun. 2015;6. 11. Sharbi-Yunger A, Grees M, Cafri G, Bassan D, Eichmüller SB, Tzehoval E, et CADERNO DE CIÊNCIAS DA SAÚDE E DA VIDA 20 al. A universal anti-cancer vaccine: Chimeric invariant chain potentiates the inhibition of melanoma progression and the improvement of survival. Int J Cancer. 2019;144(4):909–21. 12. Qiu Z, Huang H, Grenier JM, Perez OA, Smilowitz HM, Adler B, et al. Cytomegalovirus-based vaccine expressing a modified tumor antigen induces potent tumor-specific CD8+ T-cell response and protects mice from melanoma. Cancer Immunol Res. 2015;3(5):536–46. 13. Charles J, Chaperot L, Hannani D, Bruder Costa J, Templier I, Trabelsi S, et al. An innovative plasmacytoid dendritic cell line-based cancer vaccine primes and expands antitumor T-cells in melanoma patients in a first-in-human trial. Oncoimmunology. 2020;9. 14. Hussein WM, Liu TY, Jia Z, McMillan NAJ, Monteiro MJ, Toth I, et al. Multiantigenic peptide–polymer conjugates as therapeutic vaccines against cervical cancer. Bioorganic Med Chem 2016;24(18):4372–80. 15. Ngan HYS, Cheung ANY, Tam KF, Chan KKL, Tang HW, Bi D, et al. Human papillomavirus-16/18 AS04-adjuvanted cervical cancer vaccine: Immunogenicity and safety in healthy Chinese women from Hong Kong. Hong Kong Med J. 2010;16(3):171–9. 16. Le DT, Wang-Gillam A, Picozzi V, Greten TF, Crocenzi T, Springett G, et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenesexpressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol. 2015;33(12):1325–33. 17. Miyazawa M, Katsuda M, Maguchi H, Katanuma A, Ishii H, Ozaka M, et al. Phase II clinical trial using novel peptide cocktail vaccine as a postoperative adjuvant treatment for surgically resected pancreatic cancer patients. Int J Cancer. 2017;140(4):973–82. 18. Oudard S, Rixe O, Beuselinck B, Linassier C, Banu E, MacHiels JP, et al. A phase II study of the cancer vaccine TG4010 alone and in combination with cytokines in patients with metastatic renal clear-cell carcinoma: Clinical and immunological findings. Cancer Immunol Immunother. 2011;60(2):261–71. 19. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18(8):1254–61. 20. Dillon PM, Petroni GR, Smolkin ME, Brenin DR, Chianese-Bullock KA, Smith KT, et al. A pilot study of the immunogenicity of a 9-peptide breast cancer vaccine plus poly-ICLC in early stage breast cancer. J Immunother Cancer. CADERNO DE CIÊNCIAS DA SAÚDE E DA VIDA 20 2017;5(1):1–10. 21. Razazan A, Behravan J, Arab A, Barati N, Arabi L, Gholizadeh Z, et al. Conjugated nanoliposome with the HER2/ neu-derived peptide GP2 as an effective vaccine against breast cancer in mice xenograft model. PLoS One. 2017;12(10):1–22. 22. Holmes JP, Clifton GT, Patil R, Benavides LC, Gates JD, Stojadinovic A, et al. Use of booster inoculations to sustain the clinical effect of an adjuvant breast cancer vaccine. Cancer. 2011;117(3):463–71. 23. Chablani, L., Tawde, S. A., Akalkotkar, A., D'Souza, C., Selvaraj, P., & D'Souza, M. J. Formulation and evaluation of a particulate oral breast cancer vaccine. Journal of pharmaceutical sciences, 2012;101(10), 3661–3671. 24. Kwilas AR, Ardiani A, Dirmeier U, Wottawah C, Schlom J, Hodge JW. A poxviral-based cancer vaccine targeting the transcription factor twist inhibits primary tumor growth and metastases in a model of metastatic breast cancer and improves survival in a spontaneous prostate cancer model. Oncotarget. 2015;6(29):28194–210. 25. Soliman H, Khambati F, Han HS, Ismail-Khan R, Bui MM, Sullivan DM, et al. A phase-1/2 study of adenovirus-p53 transduced dendritic cell vaccine in combination with indoximod in metastatic solid tumors and invasive breast cancer. Oncotarget. 2018;9(11):10110–7. 26. Tomasicchio M, Semple L, Esmail A, Meldau R, Randall P, Pooran A, et al. An autologous dendritic cell vaccine polarizes a Th-1 response which is tumoricidal to patient-derived breast cancer cells. Cancer Immunol Immunother. 2019;68(1):71–83. 27. Xia Q, Zhang FF, Geng F, Liu CL, Xu P, Lu ZZ, et al. Anti-tumor effects of DNA vaccine targeting human fibroblast activation protein α by producing specific immune responses and altering tumor microenvironment in the 4T1 murine breast cancer model. Cancer Immunol Immunother. 2016;65(5):613–24. 28. Gheybi E, Salmanian AH, Fooladi AAI, Salimian J, Hosseini HM, Halabian R, et al. Immunogenicity of chimeric MUC1-HER2 vaccine against breast cancer in mice. Iran J Basic Med Sci. 2018;21(1):26–32. 29. Liu Y, Tang L, Gao N, Diao Y, Zhong J, Deng Y, et al. Synthetic MUC1 breast cancer vaccine containing a Toll.like receptor 7 agonist exerts antitumor effects. Oncol Lett. 2020;20(3):2369–77. CADERNO DE CIÊNCIAS DA SAÚDE E DA VIDA 20 30. Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, et al. Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med. 2018;10(436):1–15. 31. Mookerjee A, Graciotti M, Kandalaft L. A cancer vaccine with dendritic cells differentiated with GM-CSF and IFNα and pulsed with a squaric acid treated cell lysate improves T cell priming and tumor growth control in a mouse model. BioImpacts [Internet]. 2018;8(3):211–21. 32. Tawde SA, Chablani L, Akalkotkar A, D’Souza MJ. Evaluation of microparticulate ovarian cancer vaccine via transdermal route of delivery. J Control Release [Internet]. 2016;235:147–54. 33. Sabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C, Tuballes K, et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res. 2012;18(23):6497–508. 34. Wu D, Wang J, Cai Y, Ren M, Zhang Y, Shi F, et al. Effect of targeted ovarian cancer immunotherapy using ovarian cancer stem cell vaccine. J Ovarian Res. 2015;8(1):1–10. 35. Wu D, Yu X, Wang J, Hui X, Zhang Y, Cai Y, et al. Ovarian cancer stem cells with high ROR1 expression serve as a new prophylactic vaccine for ovarian cancer. J Immunol Res. 2019;2019. 36. Cappuccini F, Stribbling S, Pollock E, Hill AVS, Redchenko I. Immunogenicity and efficacy of the novel cancer vaccine based on simian adenovirus and MVA vectors alone and in combination with PD-1 mAb in a mouse model of prostate cancer. Cancer Immunol Immunother. 2016;65(6):701–13. 37. Akalkotkar, A., Chablani, L., Tawde, S. A., D'Souza, C., & D'Souza, M. J. Development of a microparticulate prostate cancer vaccine and evaluating the effect of route of administration on its efficacy via the skin. Journal of microencapsulation, 2015;32(3), 281–289. 38. Becker JT, Olson BM, Johnson LE, Davies JG, Dunphy EJ, McNeel DG. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J Immunother. 2010;33(6):639–47. 39. Kantoff PW, Schuetz TJ, Blumenstein BA, Michael Glode L, Bilhartz DL, Wyand M, et al. Overall survival analysis of a phase II randomized controlled trial of a poxviral-based PSA-targeted immunotherapy in metastatic castrationresistant prostate cancer. J Clin Oncol. 2010;28(7):1099–105. CADERNO DE CIÊNCIAS DA SAÚDE E DA VIDA 20 40. Berinstein NL, Karkada M, Morse MA, Nemunaitis JJ, Chatta G, Kaufman H, et al. First-in-man application of a novel therapeutic cancer vaccine formulation with the capacity to induce multi-functional T cell responses in ovarian, breast and prostate cancer patients. J Transl Med. 2012;10(1):1–12. 41. Kindy MS, Yu J, Zhu H, Smith MT, Gattoni-Celli S. A therapeutic cancer vaccine against GL261 murine glioma. J Transl Med. 2016;14(1):1–9. 42. Saito T, Wada H, Yamasaki M, Miyata H, Nishikawa H, Sato E, et al. High expression of MAGE-A4 and MHC class I antigens in tumor cells and induction of MAGE-A4 immune responses are prognostic markers of CHP-MAGE-A4 cancer vaccine. Vaccine. 2014;32(45):5901–7. 43. Goutsouliak K, Veeraraghavan J, Sethunath V, De Angelis C, Osborne CK, Rimawi MF, et al. Towards personalized treatment for early stage HER2positive breast cancer. Nat Rev Clin Oncol. 2020;17(4):233–50.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Centro de ensino Unificado do Distrito Federal
dc.publisher.initials.fl_str_mv UDF
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Coordenação do Curso de Biomedicina
publisher.none.fl_str_mv Centro de ensino Unificado do Distrito Federal
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Cruzeiro do Sul
instname:Universidade Cruzeiro do Sul (UNICSUL)
instacron:UNICSUL
instname_str Universidade Cruzeiro do Sul (UNICSUL)
instacron_str UNICSUL
institution UNICSUL
reponame_str Repositório Institucional da Universidade Cruzeiro do Sul
collection Repositório Institucional da Universidade Cruzeiro do Sul
bitstream.url.fl_str_mv http://dev.siteworks.com.br:8080/jspui/bitstream/123456789/1513/1/TCC%20VACINAS%20CANCER.pdf
http://dev.siteworks.com.br:8080/jspui/bitstream/123456789/1513/2/license.txt
bitstream.checksum.fl_str_mv 74dcddc9271bfd624d12ae1dbdc20639
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Cruzeiro do Sul - Universidade Cruzeiro do Sul (UNICSUL)
repository.mail.fl_str_mv mary.pela@unicid.edu.br
_version_ 1801771128452022272