Identificação automatizada de textos em imagens com Amazon Rekognition
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/40655 |
Resumo: | The recognition of text in images is a challenge in the field of computer vision due to the variety of sources, image quality, size, and colors present in images. In this context, this work aims to develop an application for recognizing text in images using the Amazon Rekognition API and evaluate its accuracy. To achieve this, an algorithm based on deep learning techniques is proposed, capable of achieving an accuracy above 90% in the location and extraction of text in images, using data extraction methods from the text detection function of the Amazon Rekognition API. This article also has the potential to contribute to the advancement of future work in the field of computer vision, with a focus on text detection in images. Finally, the study concludes that the text detection API of Amazon Rekognition is relevant in data analysis, considering that it is trained with large amounts of image data to learn relevant characteristics, achieving an accuracy above 90%. However, it is necessary to consider that image quality and the type of font used can influence the accuracy of the results. |
id |
UNIFEI_4cc871b35a0630d66589c4fe96a592a6 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/40655 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Identificação automatizada de textos em imagens com Amazon RekognitionAutomated identification of text in images with Amazon RekognitionIdentificación automatizada de texto en imágenes con Amazon RekognitionAmazon RekognitionDeep learningText recognitionData analysis.Amazon RekognitionDeep learningReconhecimento de textoAnálise de dados.Amazon RekognitionAprendizaje profundoReconocimiento de textoAnálisis de datos.The recognition of text in images is a challenge in the field of computer vision due to the variety of sources, image quality, size, and colors present in images. In this context, this work aims to develop an application for recognizing text in images using the Amazon Rekognition API and evaluate its accuracy. To achieve this, an algorithm based on deep learning techniques is proposed, capable of achieving an accuracy above 90% in the location and extraction of text in images, using data extraction methods from the text detection function of the Amazon Rekognition API. This article also has the potential to contribute to the advancement of future work in the field of computer vision, with a focus on text detection in images. Finally, the study concludes that the text detection API of Amazon Rekognition is relevant in data analysis, considering that it is trained with large amounts of image data to learn relevant characteristics, achieving an accuracy above 90%. However, it is necessary to consider that image quality and the type of font used can influence the accuracy of the results.El reconocimiento de texto en imágenes es un desafío en el campo de la visión computacional debido a la variedad de fuentes, calidad de imagen, tamaño y colores presentes en las imágenes. En este contexto, el objetivo de este trabajo es desarrollar una aplicación para reconocer texto en imágenes utilizando la API Amazon Rekognition y evaluar su precisión. Para lograrlo, se propone un algoritmo basado en técnicas de deep learning capaz de lograr uma precisión superior al 90% en la localización y extracción de texto en las imágenes, utilizando métodos de extracción de datos de la función de detección de texto de la API Amazon Rekognition. Este artículo también tiene el potencial de contribuir al avance de futuros trabajos en el campo de la visión computacional, con un enfoque en la detección de texto en imágenes. Finalmente, el estudio concluye que la API de detección de texto de Amazon Rekognition es relevante en el análisis de datos, considerando que está entrenada con grandes cantidades de datos de imagen para aprender características relevantes, alcanzando una precisión superior al 90%. Sin embargo, es necesario tener en cuenta que la calidad de la imagen y el tipo de fuente utilizada pueden influir en la precisión de los resultados.O reconhecimento de texto em imagens é um desafio na área de visão computacional devido à variedade de fontes, qualidade da imagem, tamanho e cores presentes nas imagens. Nesse contexto, este trabalho tem como objetivo desenvolver uma aplicação de reconhecimento de textos em imagens utilizando a API Amazon Rekognition e avaliar sua precisão. Para isso, é proposto um algoritmo baseado em técnicas de deep learning capaz de alcançar uma precisão acima de 90% na localização e extração de texto nas imagens, utilizando métodos de extração de dados da função de detecção de texto da API Amazon Rekognition. Este artigo também tem o potencial de contribuir para o avanço de trabalhos futuros no campo da visão computacional, com ênfase na detecção de texto em imagens. Por fim, o estudo conclui que a API de detecção de texto da Amazon Rekognition é relevante na análise de dados, considerando que é treinada com grandes quantidades de dados de imagem para aprender características relevantes, alcançando uma precisão acima de 90%. No entanto, é necessário considerar que a qualidade da imagem e o tipo de fonte utilizada podem influenciar na precisão dos resultados.Research, Society and Development2023-03-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/4065510.33448/rsd-v12i3.40655Research, Society and Development; Vol. 12 No. 3; e19812340655Research, Society and Development; Vol. 12 Núm. 3; e19812340655Research, Society and Development; v. 12 n. 3; e198123406552525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/40655/33229Copyright (c) 2023 Jardel Silas da Silva Barata; Lucas Ravele de Sousa Teixeira; Bruno Campos da Silva; Thiago Nicolau Magalhães de Souza Conte; Wilker José Caminha dos Santoshttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessBarata, Jardel Silas da SilvaTeixeira, Lucas Ravele de SousaSilva, Bruno Campos da Conte, Thiago Nicolau Magalhães de Souza Santos, Wilker José Caminha dos2023-03-23T08:33:38Zoai:ojs.pkp.sfu.ca:article/40655Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2023-03-23T08:33:38Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Identificação automatizada de textos em imagens com Amazon Rekognition Automated identification of text in images with Amazon Rekognition Identificación automatizada de texto en imágenes con Amazon Rekognition |
title |
Identificação automatizada de textos em imagens com Amazon Rekognition |
spellingShingle |
Identificação automatizada de textos em imagens com Amazon Rekognition Barata, Jardel Silas da Silva Amazon Rekognition Deep learning Text recognition Data analysis. Amazon Rekognition Deep learning Reconhecimento de texto Análise de dados. Amazon Rekognition Aprendizaje profundo Reconocimiento de texto Análisis de datos. |
title_short |
Identificação automatizada de textos em imagens com Amazon Rekognition |
title_full |
Identificação automatizada de textos em imagens com Amazon Rekognition |
title_fullStr |
Identificação automatizada de textos em imagens com Amazon Rekognition |
title_full_unstemmed |
Identificação automatizada de textos em imagens com Amazon Rekognition |
title_sort |
Identificação automatizada de textos em imagens com Amazon Rekognition |
author |
Barata, Jardel Silas da Silva |
author_facet |
Barata, Jardel Silas da Silva Teixeira, Lucas Ravele de Sousa Silva, Bruno Campos da Conte, Thiago Nicolau Magalhães de Souza Santos, Wilker José Caminha dos |
author_role |
author |
author2 |
Teixeira, Lucas Ravele de Sousa Silva, Bruno Campos da Conte, Thiago Nicolau Magalhães de Souza Santos, Wilker José Caminha dos |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Barata, Jardel Silas da Silva Teixeira, Lucas Ravele de Sousa Silva, Bruno Campos da Conte, Thiago Nicolau Magalhães de Souza Santos, Wilker José Caminha dos |
dc.subject.por.fl_str_mv |
Amazon Rekognition Deep learning Text recognition Data analysis. Amazon Rekognition Deep learning Reconhecimento de texto Análise de dados. Amazon Rekognition Aprendizaje profundo Reconocimiento de texto Análisis de datos. |
topic |
Amazon Rekognition Deep learning Text recognition Data analysis. Amazon Rekognition Deep learning Reconhecimento de texto Análise de dados. Amazon Rekognition Aprendizaje profundo Reconocimiento de texto Análisis de datos. |
description |
The recognition of text in images is a challenge in the field of computer vision due to the variety of sources, image quality, size, and colors present in images. In this context, this work aims to develop an application for recognizing text in images using the Amazon Rekognition API and evaluate its accuracy. To achieve this, an algorithm based on deep learning techniques is proposed, capable of achieving an accuracy above 90% in the location and extraction of text in images, using data extraction methods from the text detection function of the Amazon Rekognition API. This article also has the potential to contribute to the advancement of future work in the field of computer vision, with a focus on text detection in images. Finally, the study concludes that the text detection API of Amazon Rekognition is relevant in data analysis, considering that it is trained with large amounts of image data to learn relevant characteristics, achieving an accuracy above 90%. However, it is necessary to consider that image quality and the type of font used can influence the accuracy of the results. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-14 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/40655 10.33448/rsd-v12i3.40655 |
url |
https://rsdjournal.org/index.php/rsd/article/view/40655 |
identifier_str_mv |
10.33448/rsd-v12i3.40655 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/40655/33229 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 12 No. 3; e19812340655 Research, Society and Development; Vol. 12 Núm. 3; e19812340655 Research, Society and Development; v. 12 n. 3; e19812340655 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052620337053696 |