Risk Analysis regarding the costs of a residential civil works project via Python
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/28203 |
Resumo: | It is essential to analyze the projects risks that you want to execute, especially in the construction sector, cause they are highly regarded as external conditions such as: climatic, political and public health issues. Most designers use a magnification factor to define the maximum cost, however, it can be considered an overpassed way. To innovate the risk analysis in Civil Construction, the present work carried out two simulations via computational Monte Carlo Method in the Python Programming Language. The first simulation was made using the Risk Oriented Identification Approach Method and the Precedence Diagram Method and PERT/CPM Tool. Based on the above considerations, the main goal is to present a comparison between two risk analysis methodologies to later help civil construction entrepreneurs to better assess the budgetary risks of their projects. Through the results obtained by the computer simulation process were possible the identification of possible costs, and from then on, planning the best project planning. |
id |
UNIFEI_7c040fdefa1b5ce40bbacbc4c66fa0ff |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/28203 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Risk Analysis regarding the costs of a residential civil works project via PythonAnálisis de riesgos de los costes de un proyecto de obra civil residencial vía PythonAnálise de Risco dos custos de um projeto de obra civil residencial via PythonComputer SimulationMonte Carlo MethodPython LanguageAnalysisRiskProjects.Simulação ComputacionalMétodo de Monte CarloLinguagem PythonAnáliseRiscoProjetos.Simulación por ordenadorMétodo de Monte CarloLenguaje PythonAnálisisRiesgoProyectos.It is essential to analyze the projects risks that you want to execute, especially in the construction sector, cause they are highly regarded as external conditions such as: climatic, political and public health issues. Most designers use a magnification factor to define the maximum cost, however, it can be considered an overpassed way. To innovate the risk analysis in Civil Construction, the present work carried out two simulations via computational Monte Carlo Method in the Python Programming Language. The first simulation was made using the Risk Oriented Identification Approach Method and the Precedence Diagram Method and PERT/CPM Tool. Based on the above considerations, the main goal is to present a comparison between two risk analysis methodologies to later help civil construction entrepreneurs to better assess the budgetary risks of their projects. Through the results obtained by the computer simulation process were possible the identification of possible costs, and from then on, planning the best project planning.Es fundamental hoy en día analizar los riesgos de los proyectos que se quieren implementar, principalmente en el sector de la construcción civil, ya que es altamente vulnerable las condiciones externas como el clima, la política y la salud pública. La mayoría de los diseñadores utilizan un factor de escala para definir el gasto máximo, pero es una forma acarcaica. Con el fin de modernizar el análisis de riesgos en la construcción civil, el presente trabajo elaboró dos simulaciones computacionales a través del Método Monte Carlo implementado en el Lenguaje de Programación Python. La primera simulación se realizó utilizando el Método de Enfoque de Identificación Orientado al Riesgo y la segunda el Método de Diagrama de Precedencia y la Herramienta PERT / CPM. Dado lo anterior, el principal objetivo es ayudar a los emprendedores de la Construcción Civil a evaluar mejor los riesgos presupuestarios de sus proyectos. A través de los resultados obtenidos por la simulación por computadora, fue posible identificar los posibles costos máximos y, a partir de ahí, planificar para organizar mejor el progreso del proyecto.É fundamental nos dias atuais analisar os riscos dos projetos que se deseja implementar, principalmente no setor da construção civil, pois os mesmos são altamente vulneráveis a condições externas, como: questões climáticas, políticas e de saúde pública. A maioria dos projetistas usa um fator de majoração para definir o gasto máximo, porém, essa pode ser considerada uma forma ultrapassada. Para inovar a análise de risco na construção civil, o presente trabalho elaborou duas simulações computacionais via Método de Monte Carlo implementadas na Linguagem de Programação Python. A primeira simulação foi feita usando o Método de Abordagem de Identificação Orientada ao Risco e a segunda o Método de Diagrama de Precedência e Ferramenta PERT/CPM. Diante do exposto, o principal objetivo é apresentar uma comparação entre duas metodologias de análise de risco e, posteriormente, auxiliar empreendedores da construção civil a avaliarem melhor os riscos orçamentários de seus projetos. Através dos resultados obtidos pela simulação computacional foi possível identificar os possíveis custos máximos, e a partir de então planejar e organizar melhor o andamento do projeto.Research, Society and Development2022-04-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/2820310.33448/rsd-v11i5.28203Research, Society and Development; Vol. 11 No. 5; e20411528203Research, Society and Development; Vol. 11 Núm. 5; e20411528203Research, Society and Development; v. 11 n. 5; e204115282032525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/28203/24478Copyright (c) 2022 José Antônio Lima Santos; Iágo Prado Cardoso; Jaqueline Maria da Silva; Alexandre Faissal Britohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSantos, José Antônio Lima Cardoso, Iágo Prado Silva, Jaqueline Maria da Brito, Alexandre Faissal 2022-04-17T18:18:56Zoai:ojs.pkp.sfu.ca:article/28203Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:45:41.467964Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Risk Analysis regarding the costs of a residential civil works project via Python Análisis de riesgos de los costes de un proyecto de obra civil residencial vía Python Análise de Risco dos custos de um projeto de obra civil residencial via Python |
title |
Risk Analysis regarding the costs of a residential civil works project via Python |
spellingShingle |
Risk Analysis regarding the costs of a residential civil works project via Python Santos, José Antônio Lima Computer Simulation Monte Carlo Method Python Language Analysis Risk Projects. Simulação Computacional Método de Monte Carlo Linguagem Python Análise Risco Projetos. Simulación por ordenador Método de Monte Carlo Lenguaje Python Análisis Riesgo Proyectos. |
title_short |
Risk Analysis regarding the costs of a residential civil works project via Python |
title_full |
Risk Analysis regarding the costs of a residential civil works project via Python |
title_fullStr |
Risk Analysis regarding the costs of a residential civil works project via Python |
title_full_unstemmed |
Risk Analysis regarding the costs of a residential civil works project via Python |
title_sort |
Risk Analysis regarding the costs of a residential civil works project via Python |
author |
Santos, José Antônio Lima |
author_facet |
Santos, José Antônio Lima Cardoso, Iágo Prado Silva, Jaqueline Maria da Brito, Alexandre Faissal |
author_role |
author |
author2 |
Cardoso, Iágo Prado Silva, Jaqueline Maria da Brito, Alexandre Faissal |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Santos, José Antônio Lima Cardoso, Iágo Prado Silva, Jaqueline Maria da Brito, Alexandre Faissal |
dc.subject.por.fl_str_mv |
Computer Simulation Monte Carlo Method Python Language Analysis Risk Projects. Simulação Computacional Método de Monte Carlo Linguagem Python Análise Risco Projetos. Simulación por ordenador Método de Monte Carlo Lenguaje Python Análisis Riesgo Proyectos. |
topic |
Computer Simulation Monte Carlo Method Python Language Analysis Risk Projects. Simulação Computacional Método de Monte Carlo Linguagem Python Análise Risco Projetos. Simulación por ordenador Método de Monte Carlo Lenguaje Python Análisis Riesgo Proyectos. |
description |
It is essential to analyze the projects risks that you want to execute, especially in the construction sector, cause they are highly regarded as external conditions such as: climatic, political and public health issues. Most designers use a magnification factor to define the maximum cost, however, it can be considered an overpassed way. To innovate the risk analysis in Civil Construction, the present work carried out two simulations via computational Monte Carlo Method in the Python Programming Language. The first simulation was made using the Risk Oriented Identification Approach Method and the Precedence Diagram Method and PERT/CPM Tool. Based on the above considerations, the main goal is to present a comparison between two risk analysis methodologies to later help civil construction entrepreneurs to better assess the budgetary risks of their projects. Through the results obtained by the computer simulation process were possible the identification of possible costs, and from then on, planning the best project planning. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04-03 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/28203 10.33448/rsd-v11i5.28203 |
url |
https://rsdjournal.org/index.php/rsd/article/view/28203 |
identifier_str_mv |
10.33448/rsd-v11i5.28203 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/28203/24478 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 11 No. 5; e20411528203 Research, Society and Development; Vol. 11 Núm. 5; e20411528203 Research, Society and Development; v. 11 n. 5; e20411528203 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052764941975552 |