Evaluation of the water quality of the Pardo River (MG) based on physical, chemical and microbiological parameters
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/15532 |
Resumo: | This article presents an analysis of the monitoring of the water quality index and the use of multivariate statistical techniques in the mining portion of the Pardo River, in order to select the most significant parameters in the current aspects of water quality, grouping the stations according to the similarity of the studied parameters. The data used in the study were obtained from the Minas Gerais Water Management Institute - IGAM for the months of January to October of the year 2018. The water quality index was calculated for the 5 monitoring points and classified according to the IQA -NSF. Principal component analysis (PCA) and Cluster analysis (CA) were used to reduce the number of variables and to group stations with similar characteristics, respectively. The PD005 station presented the lowest average of the water quality index, this is due to the fact that the parameter of faecal coliforms stands out negatively in great quantity in the station. Using the PCA, two main components were selected as indicators of water quality explaining the cumulative variance of 78%. The CA grouped the stations into three groups, being able to identify the most polluted and the least polluted stations. The results obtained through multivariate statistics have proved to be important for understanding the current water quality situation in the basin and can be used to improve the management of water resources because the collection and analysis of all parameters at all monitoring stations requires greater availability of financial resources. |
id |
UNIFEI_c825ce6c33574c9d341e7f0aab6c7d6c |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/15532 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Evaluation of the water quality of the Pardo River (MG) based on physical, chemical and microbiological parametersEvaluación de la calidad del agua del río Pardo (MG) en base a parámetros físicos, químicos y microbiológicosAvaliação da qualidade de água do rio Pardo (MG) com base em parâmetros físicos, químicos e microbiológicosHydrographic basinMultivariate statisticsMonitoring networkCluster analysis.Red de monitoreoCuenca hidrográficaEstadística multivarianteAnálisis de conglomerados.Rede de monitoramentoBacia hidrográficaEstatística multivariadaAnálise de cluster.This article presents an analysis of the monitoring of the water quality index and the use of multivariate statistical techniques in the mining portion of the Pardo River, in order to select the most significant parameters in the current aspects of water quality, grouping the stations according to the similarity of the studied parameters. The data used in the study were obtained from the Minas Gerais Water Management Institute - IGAM for the months of January to October of the year 2018. The water quality index was calculated for the 5 monitoring points and classified according to the IQA -NSF. Principal component analysis (PCA) and Cluster analysis (CA) were used to reduce the number of variables and to group stations with similar characteristics, respectively. The PD005 station presented the lowest average of the water quality index, this is due to the fact that the parameter of faecal coliforms stands out negatively in great quantity in the station. Using the PCA, two main components were selected as indicators of water quality explaining the cumulative variance of 78%. The CA grouped the stations into three groups, being able to identify the most polluted and the least polluted stations. The results obtained through multivariate statistics have proved to be important for understanding the current water quality situation in the basin and can be used to improve the management of water resources because the collection and analysis of all parameters at all monitoring stations requires greater availability of financial resources.Este artículo presenta un análisis del seguimiento del índice de calidad del agua y el uso de técnicas estadísticas multivariadas en el tramo minero del río Pardo, con el fin de seleccionar los parámetros más significativos en los aspectos actuales de la calidad del agua, agrupando las estaciones según la similitud de los parámetros estudiados. Los datos utilizados en el estudio se obtuvieron del Instituto de Gestión del Agua de Minas Gerais - IGAM para los meses de enero a octubre del año 2018. El índice de calidad del agua se calculó para los 5 puntos de monitoreo y se clasificó según el IQA -NSF. El análisis de componentes principales (ACP) y el análisis de conglomerados (AC) se utilizaron para reducir el número de variables y agrupar estaciones con características similares, respectivamente. La estación PD005 presentó el promedio más bajo del índice de calidad del agua, esto se debe a que el parámetro de coliformes fecales se destaca negativamente en gran cantidad en la estación. Utilizando el ACP, se seleccionaron dos componentes principales como indicadores de la calidad del agua que explican la varianza acumulada del 78%. La CA agrupó las estaciones en tres grupos, pudiendo identificar las estaciones más contaminadas y las menos contaminadas. Los resultados obtenidos a través de estadísticas multivariadas han demostrado ser importantes para comprender la situación actual de la calidad del agua en la cuenca y pueden utilizarse para mejorar la gestión de los recursos hídricos porque la recopilación y análisis de todos los parámetros en todas las estaciones de monitoreo requiere una mayor disponibilidad de recursos financieros.Este artigo apresenta uma análise do monitoramento do índice de qualidade da água e o emprego de técnicas estatísticas multivariadas na porção mineira do rio Pardo, visando selecionar os parâmetros mais significativos nos aspectos atuais da qualidade da água, agrupando as estações de acordo com à semelhança dos parâmetros estudados. Os dados utilizados no estudo, foram obtidos no Instituto Mineiro de Gestão de Águas – IGAM referentes aos meses de janeiro a outubro do ano de 2018. O índice de qualidade da água foi calculado para os 5 pontos de monitoramento e classificados de acordo com o IQA-NSF. Análise de componentes principais (ACP) e a análise de Cluster (AC) foram usadas para reduzir o número de variáveis e para agrupar estações com características semelhantes, respectivamente. A estação PD005 apresentou a menor média do índice de qualidade de água, isso se deve pelo fato do parâmetro de coliformes fecais se destacar negativamente em grande quantidade na estação. Usando o ACP, dois componentes principais foram selecionados como indicadores da qualidade da água explicando a variância cumulativa de 78%. A AC agrupou as estações em três grupos podendo identificar a estação mais poluída e a estação menos poluída. Os resultados obtidos através de estatística multivariada provaram ser importantes para a compreensão da situação atual da qualidade da água na bacia e pode ser usado para melhorar a gestão dos recursos hídricos porque a coleta e análise de todos os parâmetros em todas as estações de monitoramento exigem maior disponibilidade recursos financeiros.Research, Society and Development2021-05-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/1553210.33448/rsd-v10i5.15532Research, Society and Development; Vol. 10 No. 5; e60010515532Research, Society and Development; Vol. 10 Núm. 5; e60010515532Research, Society and Development; v. 10 n. 5; e600105155322525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIporhttps://rsdjournal.org/index.php/rsd/article/view/15532/13397Copyright (c) 2021 Maria Fernanda Antunes Collares; Leonardo França da Silva; Rubens Barrichello Gomes Barbosa; Ana Carolina Chaves Dourado; Bruna Nogueira Rezende; João Antônio Costa do Nascimentohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessCollares, Maria Fernanda AntunesSilva, Leonardo França daBarbosa, Rubens Barrichello Gomes Dourado, Ana Carolina ChavesRezende, Bruna NogueiraNascimento, João Antônio Costa do 2021-05-17T18:20:49Zoai:ojs.pkp.sfu.ca:article/15532Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:36:20.243211Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Evaluation of the water quality of the Pardo River (MG) based on physical, chemical and microbiological parameters Evaluación de la calidad del agua del río Pardo (MG) en base a parámetros físicos, químicos y microbiológicos Avaliação da qualidade de água do rio Pardo (MG) com base em parâmetros físicos, químicos e microbiológicos |
title |
Evaluation of the water quality of the Pardo River (MG) based on physical, chemical and microbiological parameters |
spellingShingle |
Evaluation of the water quality of the Pardo River (MG) based on physical, chemical and microbiological parameters Collares, Maria Fernanda Antunes Hydrographic basin Multivariate statistics Monitoring network Cluster analysis. Red de monitoreo Cuenca hidrográfica Estadística multivariante Análisis de conglomerados. Rede de monitoramento Bacia hidrográfica Estatística multivariada Análise de cluster. |
title_short |
Evaluation of the water quality of the Pardo River (MG) based on physical, chemical and microbiological parameters |
title_full |
Evaluation of the water quality of the Pardo River (MG) based on physical, chemical and microbiological parameters |
title_fullStr |
Evaluation of the water quality of the Pardo River (MG) based on physical, chemical and microbiological parameters |
title_full_unstemmed |
Evaluation of the water quality of the Pardo River (MG) based on physical, chemical and microbiological parameters |
title_sort |
Evaluation of the water quality of the Pardo River (MG) based on physical, chemical and microbiological parameters |
author |
Collares, Maria Fernanda Antunes |
author_facet |
Collares, Maria Fernanda Antunes Silva, Leonardo França da Barbosa, Rubens Barrichello Gomes Dourado, Ana Carolina Chaves Rezende, Bruna Nogueira Nascimento, João Antônio Costa do |
author_role |
author |
author2 |
Silva, Leonardo França da Barbosa, Rubens Barrichello Gomes Dourado, Ana Carolina Chaves Rezende, Bruna Nogueira Nascimento, João Antônio Costa do |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Collares, Maria Fernanda Antunes Silva, Leonardo França da Barbosa, Rubens Barrichello Gomes Dourado, Ana Carolina Chaves Rezende, Bruna Nogueira Nascimento, João Antônio Costa do |
dc.subject.por.fl_str_mv |
Hydrographic basin Multivariate statistics Monitoring network Cluster analysis. Red de monitoreo Cuenca hidrográfica Estadística multivariante Análisis de conglomerados. Rede de monitoramento Bacia hidrográfica Estatística multivariada Análise de cluster. |
topic |
Hydrographic basin Multivariate statistics Monitoring network Cluster analysis. Red de monitoreo Cuenca hidrográfica Estadística multivariante Análisis de conglomerados. Rede de monitoramento Bacia hidrográfica Estatística multivariada Análise de cluster. |
description |
This article presents an analysis of the monitoring of the water quality index and the use of multivariate statistical techniques in the mining portion of the Pardo River, in order to select the most significant parameters in the current aspects of water quality, grouping the stations according to the similarity of the studied parameters. The data used in the study were obtained from the Minas Gerais Water Management Institute - IGAM for the months of January to October of the year 2018. The water quality index was calculated for the 5 monitoring points and classified according to the IQA -NSF. Principal component analysis (PCA) and Cluster analysis (CA) were used to reduce the number of variables and to group stations with similar characteristics, respectively. The PD005 station presented the lowest average of the water quality index, this is due to the fact that the parameter of faecal coliforms stands out negatively in great quantity in the station. Using the PCA, two main components were selected as indicators of water quality explaining the cumulative variance of 78%. The CA grouped the stations into three groups, being able to identify the most polluted and the least polluted stations. The results obtained through multivariate statistics have proved to be important for understanding the current water quality situation in the basin and can be used to improve the management of water resources because the collection and analysis of all parameters at all monitoring stations requires greater availability of financial resources. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-07 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/15532 10.33448/rsd-v10i5.15532 |
url |
https://rsdjournal.org/index.php/rsd/article/view/15532 |
identifier_str_mv |
10.33448/rsd-v10i5.15532 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/15532/13397 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 10 No. 5; e60010515532 Research, Society and Development; Vol. 10 Núm. 5; e60010515532 Research, Society and Development; v. 10 n. 5; e60010515532 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052806793789440 |