Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach

Detalhes bibliográficos
Autor(a) principal: Santos, Leandro Soares
Data de Publicação: 2020
Outros Autores: Moraes, Moysés Naves de, Lopes, Julia Dos Santos, Bauer, Luciana Carolina, Bonomo, Paulo, Bonomo, Renata Cristina Ferreira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Research, Society and Development
Texto Completo: https://rsdjournal.org/index.php/rsd/article/view/9806
Resumo: Thermophysical properties are important in design, simulation, optimization, and control of food processing. Its prediction is very important but theoretical basis is difficult and empirical models were commonly used. In this work, the modeling of neural networks was applied as an alternative to predict density, thermal conductivity and thermal diffusivity from the temperature and moisture content of jackfruit, genipap and umbu. Data sets from literature were used, combined and individually, to obtain four networks. Supervised multilayer perceptron networks were developed, using the back-propagation algorithm. Several configurations of artificial neural networks (ANNs) were evaluated with one or two hidden layers and a maximum of 21 and 12 neurons in each one, respectively. Data sets were divided to learning (60%) and verification (40%) steps. Best ANNs were chosen based on correlation coefficient and root mean square errors (RMSE), and compared with polynomial models using average absolute deviations (AADs). From total disposable data set, the best ANN developed presents one hidden layer with 15 neurons and shows the same predictive ability of ANNs created from individual fruits data sets, presenting close RMSE and correlation coefficient. The ANNs developed presents AADs near to polynomial models and appers as alternative to conventional modeling. Results indicate that the ANN created from total data set can replace nine polynomial models to predict the thermophysical properties of jackfruit, genipap and umbu pulps.
id UNIFEI_dfefdf28f2e880bb73f7d329fe3ae3ef
oai_identifier_str oai:ojs.pkp.sfu.ca:article/9806
network_acronym_str UNIFEI
network_name_str Research, Society and Development
repository_id_str
spelling Modeling thermal properties of exotic fruits pulps: an artificial neural networks approachModelado de propiedades térmicas de pulpas de frutas exóticas: un enfoque de redes neuronales artificialesModelagem de propriedades térmicas de polpas de frutas exóticas: uma abordagem de redes neurais artificiaisDensidadeCondutividade térmicaDifusividade térmicaRetropropagaçãoTeor de umidadeTemperatura.DensityThermal conductivityThermal diffusivityBack propagationMoisture contentTemperature.DensidadConductividad térmicaDifusividad térmicaRetropropagaciónContenido de humedadTemperatura.Thermophysical properties are important in design, simulation, optimization, and control of food processing. Its prediction is very important but theoretical basis is difficult and empirical models were commonly used. In this work, the modeling of neural networks was applied as an alternative to predict density, thermal conductivity and thermal diffusivity from the temperature and moisture content of jackfruit, genipap and umbu. Data sets from literature were used, combined and individually, to obtain four networks. Supervised multilayer perceptron networks were developed, using the back-propagation algorithm. Several configurations of artificial neural networks (ANNs) were evaluated with one or two hidden layers and a maximum of 21 and 12 neurons in each one, respectively. Data sets were divided to learning (60%) and verification (40%) steps. Best ANNs were chosen based on correlation coefficient and root mean square errors (RMSE), and compared with polynomial models using average absolute deviations (AADs). From total disposable data set, the best ANN developed presents one hidden layer with 15 neurons and shows the same predictive ability of ANNs created from individual fruits data sets, presenting close RMSE and correlation coefficient. The ANNs developed presents AADs near to polynomial models and appers as alternative to conventional modeling. Results indicate that the ANN created from total data set can replace nine polynomial models to predict the thermophysical properties of jackfruit, genipap and umbu pulps.Las propiedades termofísicas son importantes en el diseño, simulación, optimización y control del procesamiento de alimentos. Su predicción es muy importante pero la base teórica es difícil y los modelos empíricos se usaban comúnmente. En este trabajo se aplicó el modelado de redes neuronales como una alternativa para predecir la densidad, conductividad térmica y difusividad térmica a partir de la temperatura y contenido de humedad de la yaca, genipap y umbu. Se utilizaron conjuntos de datos de la literatura, combinados e individualmente, para obtener cuatro redes. Se desarrollaron redes de perceptrones multicapa supervisadas, utilizando el algoritmo de retropropagación. Se evaluaron varias configuraciones de redes neuronales artificiales (ANN) con una o dos capas ocultas y un máximo de 21 y 12 neuronas en cada una, respectivamente. Los conjuntos de datos se dividieron en pasos de aprendizaje (60%) y verificación (40%). Las mejores ANN se eligieron en función del coeficiente de correlación y los errores cuadráticos medios (RMSE), y se compararon con modelos polinomiales utilizando desviaciones absolutas promedio (AAD). A partir del conjunto de datos desechables total, la mejor ANN desarrollada presenta una capa oculta con 15 neuronas y muestra la misma capacidad predictiva de las ANN creadas a partir de conjuntos de datos de frutas individuales, presentando un RMSE cercano y un coeficiente de correlación. Los ANN desarrollados presentan AAD cercanos a modelos polinomiales y aparecen como alternativa al modelado convencional. Los resultados indican que la ANN creada a partir del conjunto de datos total puede reemplazar nueve modelos polinomiales para predecir las propiedades termofísicas de las pulpas de yaca, genipap y umbu.As propriedades termofísicas são importantes no projeto, simulação, otimização e controle do processamento de alimentos. Sua previsão é muito importante, mas a base teórica é difícil e modelos empíricos eram comumente usados. Neste trabalho, a modelagem de redes neurais foi aplicada como alternativa para predizer densidade, condutividade térmica e difusividade térmica a partir da temperatura e teor de umidade de jaca, jenipapo e umbu. Conjuntos de dados da literatura foram usados, combinados e individualmente, para obter quatro redes. Redes perceptron supervisionadas multicamadas foram desenvolvidas, utilizando o algoritmo de retropropagação. Diversas configurações de redes neurais artificiais (RNAs) foram avaliadas com uma ou duas camadas ocultas e no máximo 21 e 12 neurônios em cada uma, respectivamente. Os conjuntos de dados foram divididos em etapas de aprendizagem (60%) e verificação (40%). As melhores RNAs foram escolhidas com base no coeficiente de correlação e erro quadrático médio (RMSE), e comparadas com modelos polinomiais usando desvios absolutos médios (AADs). Do conjunto de dados descartáveis ​​totais, a melhor RNA desenvolvida apresenta uma camada oculta com 15 neurônios e mostra a mesma capacidade preditiva das RNAs criadas a partir de conjuntos de dados de frutas individuais, apresentando RMSE próximo e coeficiente de correlação. As RNAs desenvolvidas apresentam AADs próximos a modelos polinomiais e aplicativos como alternativa à modelagem convencional. Os resultados indicam que a RNA criada a partir do conjunto total de dados pode substituir nove modelos polinomiais para prever as propriedades termofísicas das polpas de jaca, jenipapo e umbu.Research, Society and Development2020-12-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/980610.33448/rsd-v9i11.9806Research, Society and Development; Vol. 9 No. 11; e7509119806Research, Society and Development; Vol. 9 Núm. 11; e7509119806Research, Society and Development; v. 9 n. 11; e75091198062525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/9806/9310Copyright (c) 2020 Leandro Soares Santos; Moysés Naves de Moraes; Julia Dos Santos Lopes; Luciana Carolina Bauer; Paulo Bonomo; Renata Cristina Ferreira Bonomohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSantos, Leandro SoaresMoraes, Moysés Naves de Lopes, Julia Dos SantosBauer, Luciana CarolinaBonomo, PauloBonomo, Renata Cristina Ferreira2020-12-10T23:37:57Zoai:ojs.pkp.sfu.ca:article/9806Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:32:00.021046Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false
dc.title.none.fl_str_mv Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach
Modelado de propiedades térmicas de pulpas de frutas exóticas: un enfoque de redes neuronales artificiales
Modelagem de propriedades térmicas de polpas de frutas exóticas: uma abordagem de redes neurais artificiais
title Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach
spellingShingle Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach
Santos, Leandro Soares
Densidade
Condutividade térmica
Difusividade térmica
Retropropagação
Teor de umidade
Temperatura.
Density
Thermal conductivity
Thermal diffusivity
Back propagation
Moisture content
Temperature.
Densidad
Conductividad térmica
Difusividad térmica
Retropropagación
Contenido de humedad
Temperatura.
title_short Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach
title_full Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach
title_fullStr Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach
title_full_unstemmed Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach
title_sort Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach
author Santos, Leandro Soares
author_facet Santos, Leandro Soares
Moraes, Moysés Naves de
Lopes, Julia Dos Santos
Bauer, Luciana Carolina
Bonomo, Paulo
Bonomo, Renata Cristina Ferreira
author_role author
author2 Moraes, Moysés Naves de
Lopes, Julia Dos Santos
Bauer, Luciana Carolina
Bonomo, Paulo
Bonomo, Renata Cristina Ferreira
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Santos, Leandro Soares
Moraes, Moysés Naves de
Lopes, Julia Dos Santos
Bauer, Luciana Carolina
Bonomo, Paulo
Bonomo, Renata Cristina Ferreira
dc.subject.por.fl_str_mv Densidade
Condutividade térmica
Difusividade térmica
Retropropagação
Teor de umidade
Temperatura.
Density
Thermal conductivity
Thermal diffusivity
Back propagation
Moisture content
Temperature.
Densidad
Conductividad térmica
Difusividad térmica
Retropropagación
Contenido de humedad
Temperatura.
topic Densidade
Condutividade térmica
Difusividade térmica
Retropropagação
Teor de umidade
Temperatura.
Density
Thermal conductivity
Thermal diffusivity
Back propagation
Moisture content
Temperature.
Densidad
Conductividad térmica
Difusividad térmica
Retropropagación
Contenido de humedad
Temperatura.
description Thermophysical properties are important in design, simulation, optimization, and control of food processing. Its prediction is very important but theoretical basis is difficult and empirical models were commonly used. In this work, the modeling of neural networks was applied as an alternative to predict density, thermal conductivity and thermal diffusivity from the temperature and moisture content of jackfruit, genipap and umbu. Data sets from literature were used, combined and individually, to obtain four networks. Supervised multilayer perceptron networks were developed, using the back-propagation algorithm. Several configurations of artificial neural networks (ANNs) were evaluated with one or two hidden layers and a maximum of 21 and 12 neurons in each one, respectively. Data sets were divided to learning (60%) and verification (40%) steps. Best ANNs were chosen based on correlation coefficient and root mean square errors (RMSE), and compared with polynomial models using average absolute deviations (AADs). From total disposable data set, the best ANN developed presents one hidden layer with 15 neurons and shows the same predictive ability of ANNs created from individual fruits data sets, presenting close RMSE and correlation coefficient. The ANNs developed presents AADs near to polynomial models and appers as alternative to conventional modeling. Results indicate that the ANN created from total data set can replace nine polynomial models to predict the thermophysical properties of jackfruit, genipap and umbu pulps.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-02
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/9806
10.33448/rsd-v9i11.9806
url https://rsdjournal.org/index.php/rsd/article/view/9806
identifier_str_mv 10.33448/rsd-v9i11.9806
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://rsdjournal.org/index.php/rsd/article/view/9806/9310
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Research, Society and Development
publisher.none.fl_str_mv Research, Society and Development
dc.source.none.fl_str_mv Research, Society and Development; Vol. 9 No. 11; e7509119806
Research, Society and Development; Vol. 9 Núm. 11; e7509119806
Research, Society and Development; v. 9 n. 11; e7509119806
2525-3409
reponame:Research, Society and Development
instname:Universidade Federal de Itajubá (UNIFEI)
instacron:UNIFEI
instname_str Universidade Federal de Itajubá (UNIFEI)
instacron_str UNIFEI
institution UNIFEI
reponame_str Research, Society and Development
collection Research, Society and Development
repository.name.fl_str_mv Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)
repository.mail.fl_str_mv rsd.articles@gmail.com
_version_ 1797052662946988032