Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Research, Society and Development |
Texto Completo: | https://rsdjournal.org/index.php/rsd/article/view/9806 |
Resumo: | Thermophysical properties are important in design, simulation, optimization, and control of food processing. Its prediction is very important but theoretical basis is difficult and empirical models were commonly used. In this work, the modeling of neural networks was applied as an alternative to predict density, thermal conductivity and thermal diffusivity from the temperature and moisture content of jackfruit, genipap and umbu. Data sets from literature were used, combined and individually, to obtain four networks. Supervised multilayer perceptron networks were developed, using the back-propagation algorithm. Several configurations of artificial neural networks (ANNs) were evaluated with one or two hidden layers and a maximum of 21 and 12 neurons in each one, respectively. Data sets were divided to learning (60%) and verification (40%) steps. Best ANNs were chosen based on correlation coefficient and root mean square errors (RMSE), and compared with polynomial models using average absolute deviations (AADs). From total disposable data set, the best ANN developed presents one hidden layer with 15 neurons and shows the same predictive ability of ANNs created from individual fruits data sets, presenting close RMSE and correlation coefficient. The ANNs developed presents AADs near to polynomial models and appers as alternative to conventional modeling. Results indicate that the ANN created from total data set can replace nine polynomial models to predict the thermophysical properties of jackfruit, genipap and umbu pulps. |
id |
UNIFEI_dfefdf28f2e880bb73f7d329fe3ae3ef |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/9806 |
network_acronym_str |
UNIFEI |
network_name_str |
Research, Society and Development |
repository_id_str |
|
spelling |
Modeling thermal properties of exotic fruits pulps: an artificial neural networks approachModelado de propiedades térmicas de pulpas de frutas exóticas: un enfoque de redes neuronales artificialesModelagem de propriedades térmicas de polpas de frutas exóticas: uma abordagem de redes neurais artificiaisDensidadeCondutividade térmicaDifusividade térmicaRetropropagaçãoTeor de umidadeTemperatura.DensityThermal conductivityThermal diffusivityBack propagationMoisture contentTemperature.DensidadConductividad térmicaDifusividad térmicaRetropropagaciónContenido de humedadTemperatura.Thermophysical properties are important in design, simulation, optimization, and control of food processing. Its prediction is very important but theoretical basis is difficult and empirical models were commonly used. In this work, the modeling of neural networks was applied as an alternative to predict density, thermal conductivity and thermal diffusivity from the temperature and moisture content of jackfruit, genipap and umbu. Data sets from literature were used, combined and individually, to obtain four networks. Supervised multilayer perceptron networks were developed, using the back-propagation algorithm. Several configurations of artificial neural networks (ANNs) were evaluated with one or two hidden layers and a maximum of 21 and 12 neurons in each one, respectively. Data sets were divided to learning (60%) and verification (40%) steps. Best ANNs were chosen based on correlation coefficient and root mean square errors (RMSE), and compared with polynomial models using average absolute deviations (AADs). From total disposable data set, the best ANN developed presents one hidden layer with 15 neurons and shows the same predictive ability of ANNs created from individual fruits data sets, presenting close RMSE and correlation coefficient. The ANNs developed presents AADs near to polynomial models and appers as alternative to conventional modeling. Results indicate that the ANN created from total data set can replace nine polynomial models to predict the thermophysical properties of jackfruit, genipap and umbu pulps.Las propiedades termofísicas son importantes en el diseño, simulación, optimización y control del procesamiento de alimentos. Su predicción es muy importante pero la base teórica es difícil y los modelos empíricos se usaban comúnmente. En este trabajo se aplicó el modelado de redes neuronales como una alternativa para predecir la densidad, conductividad térmica y difusividad térmica a partir de la temperatura y contenido de humedad de la yaca, genipap y umbu. Se utilizaron conjuntos de datos de la literatura, combinados e individualmente, para obtener cuatro redes. Se desarrollaron redes de perceptrones multicapa supervisadas, utilizando el algoritmo de retropropagación. Se evaluaron varias configuraciones de redes neuronales artificiales (ANN) con una o dos capas ocultas y un máximo de 21 y 12 neuronas en cada una, respectivamente. Los conjuntos de datos se dividieron en pasos de aprendizaje (60%) y verificación (40%). Las mejores ANN se eligieron en función del coeficiente de correlación y los errores cuadráticos medios (RMSE), y se compararon con modelos polinomiales utilizando desviaciones absolutas promedio (AAD). A partir del conjunto de datos desechables total, la mejor ANN desarrollada presenta una capa oculta con 15 neuronas y muestra la misma capacidad predictiva de las ANN creadas a partir de conjuntos de datos de frutas individuales, presentando un RMSE cercano y un coeficiente de correlación. Los ANN desarrollados presentan AAD cercanos a modelos polinomiales y aparecen como alternativa al modelado convencional. Los resultados indican que la ANN creada a partir del conjunto de datos total puede reemplazar nueve modelos polinomiales para predecir las propiedades termofísicas de las pulpas de yaca, genipap y umbu.As propriedades termofísicas são importantes no projeto, simulação, otimização e controle do processamento de alimentos. Sua previsão é muito importante, mas a base teórica é difícil e modelos empíricos eram comumente usados. Neste trabalho, a modelagem de redes neurais foi aplicada como alternativa para predizer densidade, condutividade térmica e difusividade térmica a partir da temperatura e teor de umidade de jaca, jenipapo e umbu. Conjuntos de dados da literatura foram usados, combinados e individualmente, para obter quatro redes. Redes perceptron supervisionadas multicamadas foram desenvolvidas, utilizando o algoritmo de retropropagação. Diversas configurações de redes neurais artificiais (RNAs) foram avaliadas com uma ou duas camadas ocultas e no máximo 21 e 12 neurônios em cada uma, respectivamente. Os conjuntos de dados foram divididos em etapas de aprendizagem (60%) e verificação (40%). As melhores RNAs foram escolhidas com base no coeficiente de correlação e erro quadrático médio (RMSE), e comparadas com modelos polinomiais usando desvios absolutos médios (AADs). Do conjunto de dados descartáveis totais, a melhor RNA desenvolvida apresenta uma camada oculta com 15 neurônios e mostra a mesma capacidade preditiva das RNAs criadas a partir de conjuntos de dados de frutas individuais, apresentando RMSE próximo e coeficiente de correlação. As RNAs desenvolvidas apresentam AADs próximos a modelos polinomiais e aplicativos como alternativa à modelagem convencional. Os resultados indicam que a RNA criada a partir do conjunto total de dados pode substituir nove modelos polinomiais para prever as propriedades termofísicas das polpas de jaca, jenipapo e umbu.Research, Society and Development2020-12-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://rsdjournal.org/index.php/rsd/article/view/980610.33448/rsd-v9i11.9806Research, Society and Development; Vol. 9 No. 11; e7509119806Research, Society and Development; Vol. 9 Núm. 11; e7509119806Research, Society and Development; v. 9 n. 11; e75091198062525-3409reponame:Research, Society and Developmentinstname:Universidade Federal de Itajubá (UNIFEI)instacron:UNIFEIenghttps://rsdjournal.org/index.php/rsd/article/view/9806/9310Copyright (c) 2020 Leandro Soares Santos; Moysés Naves de Moraes; Julia Dos Santos Lopes; Luciana Carolina Bauer; Paulo Bonomo; Renata Cristina Ferreira Bonomohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSantos, Leandro SoaresMoraes, Moysés Naves de Lopes, Julia Dos SantosBauer, Luciana CarolinaBonomo, PauloBonomo, Renata Cristina Ferreira2020-12-10T23:37:57Zoai:ojs.pkp.sfu.ca:article/9806Revistahttps://rsdjournal.org/index.php/rsd/indexPUBhttps://rsdjournal.org/index.php/rsd/oairsd.articles@gmail.com2525-34092525-3409opendoar:2024-01-17T09:32:00.021046Research, Society and Development - Universidade Federal de Itajubá (UNIFEI)false |
dc.title.none.fl_str_mv |
Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach Modelado de propiedades térmicas de pulpas de frutas exóticas: un enfoque de redes neuronales artificiales Modelagem de propriedades térmicas de polpas de frutas exóticas: uma abordagem de redes neurais artificiais |
title |
Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach |
spellingShingle |
Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach Santos, Leandro Soares Densidade Condutividade térmica Difusividade térmica Retropropagação Teor de umidade Temperatura. Density Thermal conductivity Thermal diffusivity Back propagation Moisture content Temperature. Densidad Conductividad térmica Difusividad térmica Retropropagación Contenido de humedad Temperatura. |
title_short |
Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach |
title_full |
Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach |
title_fullStr |
Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach |
title_full_unstemmed |
Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach |
title_sort |
Modeling thermal properties of exotic fruits pulps: an artificial neural networks approach |
author |
Santos, Leandro Soares |
author_facet |
Santos, Leandro Soares Moraes, Moysés Naves de Lopes, Julia Dos Santos Bauer, Luciana Carolina Bonomo, Paulo Bonomo, Renata Cristina Ferreira |
author_role |
author |
author2 |
Moraes, Moysés Naves de Lopes, Julia Dos Santos Bauer, Luciana Carolina Bonomo, Paulo Bonomo, Renata Cristina Ferreira |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Santos, Leandro Soares Moraes, Moysés Naves de Lopes, Julia Dos Santos Bauer, Luciana Carolina Bonomo, Paulo Bonomo, Renata Cristina Ferreira |
dc.subject.por.fl_str_mv |
Densidade Condutividade térmica Difusividade térmica Retropropagação Teor de umidade Temperatura. Density Thermal conductivity Thermal diffusivity Back propagation Moisture content Temperature. Densidad Conductividad térmica Difusividad térmica Retropropagación Contenido de humedad Temperatura. |
topic |
Densidade Condutividade térmica Difusividade térmica Retropropagação Teor de umidade Temperatura. Density Thermal conductivity Thermal diffusivity Back propagation Moisture content Temperature. Densidad Conductividad térmica Difusividad térmica Retropropagación Contenido de humedad Temperatura. |
description |
Thermophysical properties are important in design, simulation, optimization, and control of food processing. Its prediction is very important but theoretical basis is difficult and empirical models were commonly used. In this work, the modeling of neural networks was applied as an alternative to predict density, thermal conductivity and thermal diffusivity from the temperature and moisture content of jackfruit, genipap and umbu. Data sets from literature were used, combined and individually, to obtain four networks. Supervised multilayer perceptron networks were developed, using the back-propagation algorithm. Several configurations of artificial neural networks (ANNs) were evaluated with one or two hidden layers and a maximum of 21 and 12 neurons in each one, respectively. Data sets were divided to learning (60%) and verification (40%) steps. Best ANNs were chosen based on correlation coefficient and root mean square errors (RMSE), and compared with polynomial models using average absolute deviations (AADs). From total disposable data set, the best ANN developed presents one hidden layer with 15 neurons and shows the same predictive ability of ANNs created from individual fruits data sets, presenting close RMSE and correlation coefficient. The ANNs developed presents AADs near to polynomial models and appers as alternative to conventional modeling. Results indicate that the ANN created from total data set can replace nine polynomial models to predict the thermophysical properties of jackfruit, genipap and umbu pulps. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-02 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/9806 10.33448/rsd-v9i11.9806 |
url |
https://rsdjournal.org/index.php/rsd/article/view/9806 |
identifier_str_mv |
10.33448/rsd-v9i11.9806 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://rsdjournal.org/index.php/rsd/article/view/9806/9310 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Research, Society and Development |
publisher.none.fl_str_mv |
Research, Society and Development |
dc.source.none.fl_str_mv |
Research, Society and Development; Vol. 9 No. 11; e7509119806 Research, Society and Development; Vol. 9 Núm. 11; e7509119806 Research, Society and Development; v. 9 n. 11; e7509119806 2525-3409 reponame:Research, Society and Development instname:Universidade Federal de Itajubá (UNIFEI) instacron:UNIFEI |
instname_str |
Universidade Federal de Itajubá (UNIFEI) |
instacron_str |
UNIFEI |
institution |
UNIFEI |
reponame_str |
Research, Society and Development |
collection |
Research, Society and Development |
repository.name.fl_str_mv |
Research, Society and Development - Universidade Federal de Itajubá (UNIFEI) |
repository.mail.fl_str_mv |
rsd.articles@gmail.com |
_version_ |
1797052662946988032 |