Caracterização e aplicação da casca residual do processamento da Jabuticaba

Detalhes bibliográficos
Autor(a) principal: Moura, Cláudia de Andrade
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações do UNIOESTE
Texto Completo: http://tede.unioeste.br:8080/tede/handle/tede/268
Resumo: Jabuticaba tree (Plinia sp.) is a native species that has been widely distributed in almost all regions of Brazil. Recently, different native fruits, including jabuticaba, have been a research aim in order to investigate the best benefit of its nutritional properties. In order to arouse new alternatives for better utilization of agro-industrial by-products with nutritional and functional properties, researchers are seeking to develop innovative and functional bioactive products. By this angle, this study aimed at evaluating whether different jabuticaba juice extraction processes applied to obtain peels interfered on its nutritional properties as well as on the subsequent dehydration in order to turn a nutrient-rich residue, agro-industrial benefitted, in a food product that can be attractive to the consumer, as well as easy to be handled, stored and transported. Thus, this study was divided into three phases: the first one was divided according to the acquisition of jabuticaba fruits, from two identified genotypes as: one genotype as acquired in Clevelândia farm (25°07'20" S and 52°19'15" W) and the other genotype from Verê farm (25°53'1'' S: 52° 55' 11'' W). The fruits underwent through extraction process by crushing and forced steam to obtain peels. Subsequently, peels were submitted to dehydration process in an oven with forced air circulation at 70 °C. Then, after being dehydrated, they were ground and sieved to an 80-mesh size to obtain powder. Analyses were carried out to evaluate the influence of these processes in bioactive compounds and their variations based on samples of fresh jabuticaba peels from each genotype, since they underwent through the extraction process and then dehydration. This research was based on physicochemical analyses of hydroalcoholic extracts of samples. Centesimal composition parameters were evaluated: total soluble solids (TSS), titratable acidity, pH, ash, fiber, protein and moisture content, bioactive compounds (phenols, flavonoids and anthocyanins) and antioxidant activity (DPPH, ABTS and FRAP). The way jabuticaba peel was extracted (fresh or dried - powder) did not influence the obtained physicochemical results, or antioxidant activities measured by ABTS and FRAP. Jabuticaba peels of both studied genotypes, extracted by crushing, showed the best contents concerning flavonoids, phenolic compounds and antioxidant activity by DPPH method. Jabuticaba peels of Clevelândia genotype showed the highest antioxidant content, flavonoids, phenolic, ABTS and FRAP. In the second moment of this trial, there was some effect of storage in anthocyanin content, antioxidant activity according to three different methods (DPPH, FRAP and ABTS), flavonoids, phenolic and physicochemical characteristics (moisture content, total acidity, pH, ashes, protein and fiber) of such waste powder (to obtain jabuticaba peel powder from both genotypes, extracted by steam and crushing). They also were vacuum packed and stored for 135 days. It was observed that the extraction by crushing showed the best results for DPPH activity according to the storage time and jabuticaba peel from Clevelândia genotype showed the highest antioxidant activity when compared to Verê genotype at the start time and over 135 storage days. Likewise this time has not changed, parameters as acidity and total protein content were obtained in both genotypes and their different extraction processes of jabuticaba powder peel. For the third phase, two evaluated waste samples were selected in phases I and II, which powder peel of Clevelândia genotype was extracted by forced-steam process (GCLV) while powder peel of Verê genotype was extracted by crushing (GVRE). Then, microbiological analyses were carried out (coliforms at 45 °C g-1, Salmonella spp. 25g-1 and yeasts and molds) with natural yogurt and selected powder peels of jabuticaba. Subsequently, four formulations were prepared and two of them were for each genotype: 3.6% GCLV and 1.8% GCLV while two ratios were for (3.6% / 1.8%) GVRE samples. The formulations were submitted to sensorial analyses of acceptability, purchase intent, frequency and reason for the evaluated product consumption, with 100 untrained consumers. The quality of jabuticaba peel color (Verê/Clevelândia genotypes) in powder was also evaluated after extraction xi (steam/crushing), and a*, b*, L*, C*, H* and Δab* color coordinates were analyzed. The dehydrated product and yogurt showed a low counting for filamentous fungi, yeasts, thermotolerant coliforms and absence of Salmonella spp., which indicates some good processing conditions. The addition of jabuticaba peel powder in yogurt resulted in good acceptance for samples such as 1.8g GCLV; 3.6g GCLV and 1.8g GVRE, whose answers varied from: I liked moderately and I liked very much . These samples received results of good intention to buy samples such as 1.8g GCLV, 3.6g GCLV and 1.8g GVRE. Concerning color, there was no effect on the quality of jabuticaba peel powder up to 135 storage days. Generally, the obtained peels by crushing showed the highest contents of flavonoids, phenolic compounds and antioxidant activity by DPPH method. Therefore, antioxidants of this product in yogurt is a promising alternative, since the results showed good rates for both genotypes and extraction treatments (steam/crushing). Wherefore, this process not only provides some proper disposal for waste but also uses important nutrients and natural dyes to add value to several kinds of foodstuff.
id UNIOESTE-1_0eb0e722edaa4697f653aec483cec672
oai_identifier_str oai:tede.unioeste.br:tede/268
network_acronym_str UNIOESTE-1
network_name_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
repository_id_str
spelling Christ, DivairCPF:66206863972http://lattes.cnpq.br/6200553304840204Domenico, Adriana Sbardelotto DiCPF:0376609690http://lattes.cnpq.br/7513246316553733Frata, Marcela TostesCPF:00335688985http://lattes.cnpq.br/8243438180476961Braga, Gilberto CostaCPF:05456147831http://lattes.cnpq.br/5595085713178176Coelho, Silvia Renata MachadoCPF:88213943600http://lattes.cnpq.br/3554106124561773CPF:54380472434claudia@utfpr.edu.brMoura, Cláudia de Andrade2017-05-12T14:47:38Z2016-07-222016-02-05MOURA, Cláudia de Andrade. Characterization and application of jabuticaba peel from a processing residue. 2016. 135 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2016.http://tede.unioeste.br:8080/tede/handle/tede/268Jabuticaba tree (Plinia sp.) is a native species that has been widely distributed in almost all regions of Brazil. Recently, different native fruits, including jabuticaba, have been a research aim in order to investigate the best benefit of its nutritional properties. In order to arouse new alternatives for better utilization of agro-industrial by-products with nutritional and functional properties, researchers are seeking to develop innovative and functional bioactive products. By this angle, this study aimed at evaluating whether different jabuticaba juice extraction processes applied to obtain peels interfered on its nutritional properties as well as on the subsequent dehydration in order to turn a nutrient-rich residue, agro-industrial benefitted, in a food product that can be attractive to the consumer, as well as easy to be handled, stored and transported. Thus, this study was divided into three phases: the first one was divided according to the acquisition of jabuticaba fruits, from two identified genotypes as: one genotype as acquired in Clevelândia farm (25°07'20" S and 52°19'15" W) and the other genotype from Verê farm (25°53'1'' S: 52° 55' 11'' W). The fruits underwent through extraction process by crushing and forced steam to obtain peels. Subsequently, peels were submitted to dehydration process in an oven with forced air circulation at 70 °C. Then, after being dehydrated, they were ground and sieved to an 80-mesh size to obtain powder. Analyses were carried out to evaluate the influence of these processes in bioactive compounds and their variations based on samples of fresh jabuticaba peels from each genotype, since they underwent through the extraction process and then dehydration. This research was based on physicochemical analyses of hydroalcoholic extracts of samples. Centesimal composition parameters were evaluated: total soluble solids (TSS), titratable acidity, pH, ash, fiber, protein and moisture content, bioactive compounds (phenols, flavonoids and anthocyanins) and antioxidant activity (DPPH, ABTS and FRAP). The way jabuticaba peel was extracted (fresh or dried - powder) did not influence the obtained physicochemical results, or antioxidant activities measured by ABTS and FRAP. Jabuticaba peels of both studied genotypes, extracted by crushing, showed the best contents concerning flavonoids, phenolic compounds and antioxidant activity by DPPH method. Jabuticaba peels of Clevelândia genotype showed the highest antioxidant content, flavonoids, phenolic, ABTS and FRAP. In the second moment of this trial, there was some effect of storage in anthocyanin content, antioxidant activity according to three different methods (DPPH, FRAP and ABTS), flavonoids, phenolic and physicochemical characteristics (moisture content, total acidity, pH, ashes, protein and fiber) of such waste powder (to obtain jabuticaba peel powder from both genotypes, extracted by steam and crushing). They also were vacuum packed and stored for 135 days. It was observed that the extraction by crushing showed the best results for DPPH activity according to the storage time and jabuticaba peel from Clevelândia genotype showed the highest antioxidant activity when compared to Verê genotype at the start time and over 135 storage days. Likewise this time has not changed, parameters as acidity and total protein content were obtained in both genotypes and their different extraction processes of jabuticaba powder peel. For the third phase, two evaluated waste samples were selected in phases I and II, which powder peel of Clevelândia genotype was extracted by forced-steam process (GCLV) while powder peel of Verê genotype was extracted by crushing (GVRE). Then, microbiological analyses were carried out (coliforms at 45 °C g-1, Salmonella spp. 25g-1 and yeasts and molds) with natural yogurt and selected powder peels of jabuticaba. Subsequently, four formulations were prepared and two of them were for each genotype: 3.6% GCLV and 1.8% GCLV while two ratios were for (3.6% / 1.8%) GVRE samples. The formulations were submitted to sensorial analyses of acceptability, purchase intent, frequency and reason for the evaluated product consumption, with 100 untrained consumers. The quality of jabuticaba peel color (Verê/Clevelândia genotypes) in powder was also evaluated after extraction xi (steam/crushing), and a*, b*, L*, C*, H* and Δab* color coordinates were analyzed. The dehydrated product and yogurt showed a low counting for filamentous fungi, yeasts, thermotolerant coliforms and absence of Salmonella spp., which indicates some good processing conditions. The addition of jabuticaba peel powder in yogurt resulted in good acceptance for samples such as 1.8g GCLV; 3.6g GCLV and 1.8g GVRE, whose answers varied from: I liked moderately and I liked very much . These samples received results of good intention to buy samples such as 1.8g GCLV, 3.6g GCLV and 1.8g GVRE. Concerning color, there was no effect on the quality of jabuticaba peel powder up to 135 storage days. Generally, the obtained peels by crushing showed the highest contents of flavonoids, phenolic compounds and antioxidant activity by DPPH method. Therefore, antioxidants of this product in yogurt is a promising alternative, since the results showed good rates for both genotypes and extraction treatments (steam/crushing). Wherefore, this process not only provides some proper disposal for waste but also uses important nutrients and natural dyes to add value to several kinds of foodstuff.A jabuticabeira (Plinia sp.) é uma espécie nativa que se encontra amplamente distribuída em quase todas as regiões brasileiras. Recentemente, diferentes frutos nativos, entre eles a jabuticaba, têm sido alvo de pesquisa para investigar o melhor aproveitamento de suas propriedades nutricionais. Com perspectivas de trazer novas alternativas para o melhor aproveitamento de subprodutos agroindustriais que tenham propriedades nutritivas e funcionais, pesquisadores estão buscando o desenvolvimento de produtos inovadores e funcionais (bioativos). Por esse viés, este trabalho objetivou avaliar se diferentes processos de extração de suco de jabuticaba para obtenção das cascas interferiam nas suas propriedades nutritivas bem como na posterior desidratação, com o intuito de transformar um resíduo rico em nutrientes, aproveitado agroindustrialmente, em um produto alimentício atrativo para o consumidor, além da facilidade de manuseio, armazenamento e transporte. Sendo assim, este estudo foi dividido em três fases: a primeira com a aquisição dos frutos de jabuticabeira, de dois genótipos, identificados como genótipo adquirido no sítio em Clevelândia ( 25°07 20 S e 52°19 15 W,) e genótipo do sítio em Verê (25° 53' 1'' S: 52° 55' 11'' W). Os frutos passaram pelo processo de extração por esmagamento e por vapor forçado, para obtenção da casca. Na sequência, foram submetidas ao processo de desidratação em estufa com circulação forçada de ar a 70 °C. Depois de desidratadas foram moídas e peneiradas com granulometria 80 mesh para obtenção do pó. Foram realizadas análises para avaliar a influência desses processos nos compostos bioativos e suas variações nas amostras das cascas frescas de jabuticaba dos genótipos, ao passarem pelos processos de extrações e em seguida desidratação. Esta investigação decorreu a partir de análises físico-químicas dos extratos hidroalcoólicos das amostras. Foram avaliados os parâmetros da composição centesimal: sólidos solúveis totais (SST), acidez titulável, pH, cinzas, fibras, proteínas e grau de umidade, compostos bioativos (fenóis, flavonoides e antocianinas) e atividade antioxidante (DPPH, ABTS e FRAP). O tipo de extração da casca de jabuticaba fresca ou desidratada (em pó) não influenciou nos resultados físico-químicos, nem para as atividades antioxidantes medidas por ABTS e FRAP. As cascas de jabuticaba de ambos genótipos, extraídas por esmagamento, apresentaram melhores índices de flavonoides, fenólicos e atividade antioxidante pelo método DPPH. As cascas de jabuticabas do genótipo Clevelândia apresentaram maior teor de antioxidante, flavonoides, fenólicos, ABTS e FRAP. Na segunda fase do trabalho verificou-se o efeito do armazenamento, nos conteúdos de antocianinas, atividade antioxidante por três métodos distintos (DPPH, FRAP e ABTS), flavonoides, fenólicos e características físico-químicas (teor de umidade, acidez titulável, pH e cinzas proteína e fibra) do pó destes resíduos (obtenção da casca de jabuticaba em pó de dois genótipos, extraídos a vapor e esmagamento), embalados a vácuo e armazenados por 135 dias. Observou-se que a extração por esmagamento apresentou melhores resultados para atividade de DPPH em função do tempo de armazenamento e que a casca de jabuticaba do genótipo Clevelândia apresentou maior atividade antioxidante em relação à casca do genótipo Verê, no tempo inicial e ao longo de 135 dias de armazenamento. Além deste tempo não ter sido alterado, foram obtidos os parâmetros de acidez e teor de proteína totais em ambos genótipos e seus distintos processos de extrações da casca de jabuticaba em pó. Para fase três, foram selecionados dois dos resíduos avaliados nas fases I e II, cujo pó da casca de jabuticaba do genótipo de Clevelândia foi extraído pelo processo a vapor (GCLV) e o pó da casca de jabuticaba do genótipo de Verê foi extraído por esmagamento (GVRE). Em seguida, foram realizadas análises microbiológicas (coliformes a 45°C g-1, Salmonella spp. 25g-1 e bolores e leveduras) com o iogurte natural e com a cascas de jabuticaba em pó, selecionadas. Na sequência, foram elaboradas quatro formulações sendo duas para cada genótipo: GCLV ix 3,6% e GCLV 1,8% e duas proporções para as amostras, GVRE (3,6% e 1,8%). As formulações foram submetidas às análises sensorial de aceitabilidade, intenção de compra, frequência e motivo do consumo do produto avaliado, contando com 100 consumidores não treinados. Também foi avaliada a qualidade da cor das cascas de jabuticaba (genótipo Verê/Clevelândia) em pó após extrações (vapor/esmagamento), e foram analisadas as coordenadas de cor a*, b*, L*, C*, H* e Δab*. O produto desidratado e o iogurte apresentaram baixa contagem para fungos filamentosos, leveduras, coliformes termotolerantes e ausência de Salmonella spp., indicando boas condições de processamento. A adição da casca de jabuticaba em pó, no iogurte, resultou em boa aceitação para as amostras GCLV 1,8g; GCLV 3,6 g e GVRE 1,8g situando-se entre o termo gostei moderadamente e gostei muito. As mesmas obtiveram resultados de boa intenção de compra para as amostras GCLV 1,8g; GCLV 3,6 g e GVRE 1,8g. Na cor, a casca de jabuticaba em pó não teve a qualidade afetada até 135 dias de armazenamento. De forma geral, as cascas obtidas por esmagamento apresentaram melhores índices de flavonoides, fenólicos e atividade antioxidante pelo método DPPH. Portanto, os antioxidantes desse produto em iogurte é uma alternativa promissora, visto que obtiveram resultados com bons índices para ambos genótipos e tratamentos de extração (vapor/esmagamento). Logo, além de dar destinação adequada a um resíduo, tal processo aproveita nutrientes e corantes naturais, importantes para agregar valor a vários alimentosMade available in DSpace on 2017-05-12T14:47:38Z (GMT). No. of bitstreams: 1 Claudia_ Moura (Tese revisada) (1).pdf: 3911895 bytes, checksum: 0a37c7fb902019cf109ae32f1afc5dde (MD5) Previous issue date: 2016-02-05application/pdfporUniversidade Estadual do Oeste do ParanaPrograma de Pós-Graduação "Stricto Sensu" em Engenharia AgrícolaUNIOESTEBREngenhariaAntocianinasFibras alimentaresPigmentos (análise sensorial)(Plinia sp.)AnthocyaninsDietary fiberPigments (sensorial analysis)(Plinia sp.)CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLACaracterização e aplicação da casca residual do processamento da JabuticabaCharacterization and application of jabuticaba peel from a processing residueinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações do UNIOESTEinstname:Universidade Estadual do Oeste do Paraná (UNIOESTE)instacron:UNIOESTEORIGINALClaudia_ Moura (Tese revisada) (1).pdfapplication/pdf3911895http://tede.unioeste.br:8080/tede/bitstream/tede/268/1/Claudia_+Moura+%28Tese+revisada%29+%281%29.pdf0a37c7fb902019cf109ae32f1afc5ddeMD51tede/2682017-05-12 11:47:38.282oai:tede.unioeste.br:tede/268Biblioteca Digital de Teses e Dissertaçõeshttp://tede.unioeste.br/PUBhttp://tede.unioeste.br/oai/requestbiblioteca.repositorio@unioeste.bropendoar:2017-05-12T14:47:38Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)false
dc.title.por.fl_str_mv Caracterização e aplicação da casca residual do processamento da Jabuticaba
dc.title.alternative.eng.fl_str_mv Characterization and application of jabuticaba peel from a processing residue
title Caracterização e aplicação da casca residual do processamento da Jabuticaba
spellingShingle Caracterização e aplicação da casca residual do processamento da Jabuticaba
Moura, Cláudia de Andrade
Antocianinas
Fibras alimentares
Pigmentos (análise sensorial)
(Plinia sp.)
Anthocyanins
Dietary fiber
Pigments (sensorial analysis)
(Plinia sp.)
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Caracterização e aplicação da casca residual do processamento da Jabuticaba
title_full Caracterização e aplicação da casca residual do processamento da Jabuticaba
title_fullStr Caracterização e aplicação da casca residual do processamento da Jabuticaba
title_full_unstemmed Caracterização e aplicação da casca residual do processamento da Jabuticaba
title_sort Caracterização e aplicação da casca residual do processamento da Jabuticaba
author Moura, Cláudia de Andrade
author_facet Moura, Cláudia de Andrade
author_role author
dc.contributor.advisor1.fl_str_mv Christ, Divair
dc.contributor.advisor1ID.fl_str_mv CPF:66206863972
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6200553304840204
dc.contributor.referee1.fl_str_mv Domenico, Adriana Sbardelotto Di
dc.contributor.referee1ID.fl_str_mv CPF:0376609690
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/7513246316553733
dc.contributor.referee2.fl_str_mv Frata, Marcela Tostes
dc.contributor.referee2ID.fl_str_mv CPF:00335688985
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/8243438180476961
dc.contributor.referee3.fl_str_mv Braga, Gilberto Costa
dc.contributor.referee3ID.fl_str_mv CPF:05456147831
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/5595085713178176
dc.contributor.referee4.fl_str_mv Coelho, Silvia Renata Machado
dc.contributor.referee4ID.fl_str_mv CPF:88213943600
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/3554106124561773
dc.contributor.authorID.fl_str_mv CPF:54380472434
dc.contributor.authorLattes.fl_str_mv claudia@utfpr.edu.br
dc.contributor.author.fl_str_mv Moura, Cláudia de Andrade
contributor_str_mv Christ, Divair
Domenico, Adriana Sbardelotto Di
Frata, Marcela Tostes
Braga, Gilberto Costa
Coelho, Silvia Renata Machado
dc.subject.por.fl_str_mv Antocianinas
Fibras alimentares
Pigmentos (análise sensorial)
(Plinia sp.)
topic Antocianinas
Fibras alimentares
Pigmentos (análise sensorial)
(Plinia sp.)
Anthocyanins
Dietary fiber
Pigments (sensorial analysis)
(Plinia sp.)
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
dc.subject.eng.fl_str_mv Anthocyanins
Dietary fiber
Pigments (sensorial analysis)
(Plinia sp.)
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description Jabuticaba tree (Plinia sp.) is a native species that has been widely distributed in almost all regions of Brazil. Recently, different native fruits, including jabuticaba, have been a research aim in order to investigate the best benefit of its nutritional properties. In order to arouse new alternatives for better utilization of agro-industrial by-products with nutritional and functional properties, researchers are seeking to develop innovative and functional bioactive products. By this angle, this study aimed at evaluating whether different jabuticaba juice extraction processes applied to obtain peels interfered on its nutritional properties as well as on the subsequent dehydration in order to turn a nutrient-rich residue, agro-industrial benefitted, in a food product that can be attractive to the consumer, as well as easy to be handled, stored and transported. Thus, this study was divided into three phases: the first one was divided according to the acquisition of jabuticaba fruits, from two identified genotypes as: one genotype as acquired in Clevelândia farm (25°07'20" S and 52°19'15" W) and the other genotype from Verê farm (25°53'1'' S: 52° 55' 11'' W). The fruits underwent through extraction process by crushing and forced steam to obtain peels. Subsequently, peels were submitted to dehydration process in an oven with forced air circulation at 70 °C. Then, after being dehydrated, they were ground and sieved to an 80-mesh size to obtain powder. Analyses were carried out to evaluate the influence of these processes in bioactive compounds and their variations based on samples of fresh jabuticaba peels from each genotype, since they underwent through the extraction process and then dehydration. This research was based on physicochemical analyses of hydroalcoholic extracts of samples. Centesimal composition parameters were evaluated: total soluble solids (TSS), titratable acidity, pH, ash, fiber, protein and moisture content, bioactive compounds (phenols, flavonoids and anthocyanins) and antioxidant activity (DPPH, ABTS and FRAP). The way jabuticaba peel was extracted (fresh or dried - powder) did not influence the obtained physicochemical results, or antioxidant activities measured by ABTS and FRAP. Jabuticaba peels of both studied genotypes, extracted by crushing, showed the best contents concerning flavonoids, phenolic compounds and antioxidant activity by DPPH method. Jabuticaba peels of Clevelândia genotype showed the highest antioxidant content, flavonoids, phenolic, ABTS and FRAP. In the second moment of this trial, there was some effect of storage in anthocyanin content, antioxidant activity according to three different methods (DPPH, FRAP and ABTS), flavonoids, phenolic and physicochemical characteristics (moisture content, total acidity, pH, ashes, protein and fiber) of such waste powder (to obtain jabuticaba peel powder from both genotypes, extracted by steam and crushing). They also were vacuum packed and stored for 135 days. It was observed that the extraction by crushing showed the best results for DPPH activity according to the storage time and jabuticaba peel from Clevelândia genotype showed the highest antioxidant activity when compared to Verê genotype at the start time and over 135 storage days. Likewise this time has not changed, parameters as acidity and total protein content were obtained in both genotypes and their different extraction processes of jabuticaba powder peel. For the third phase, two evaluated waste samples were selected in phases I and II, which powder peel of Clevelândia genotype was extracted by forced-steam process (GCLV) while powder peel of Verê genotype was extracted by crushing (GVRE). Then, microbiological analyses were carried out (coliforms at 45 °C g-1, Salmonella spp. 25g-1 and yeasts and molds) with natural yogurt and selected powder peels of jabuticaba. Subsequently, four formulations were prepared and two of them were for each genotype: 3.6% GCLV and 1.8% GCLV while two ratios were for (3.6% / 1.8%) GVRE samples. The formulations were submitted to sensorial analyses of acceptability, purchase intent, frequency and reason for the evaluated product consumption, with 100 untrained consumers. The quality of jabuticaba peel color (Verê/Clevelândia genotypes) in powder was also evaluated after extraction xi (steam/crushing), and a*, b*, L*, C*, H* and Δab* color coordinates were analyzed. The dehydrated product and yogurt showed a low counting for filamentous fungi, yeasts, thermotolerant coliforms and absence of Salmonella spp., which indicates some good processing conditions. The addition of jabuticaba peel powder in yogurt resulted in good acceptance for samples such as 1.8g GCLV; 3.6g GCLV and 1.8g GVRE, whose answers varied from: I liked moderately and I liked very much . These samples received results of good intention to buy samples such as 1.8g GCLV, 3.6g GCLV and 1.8g GVRE. Concerning color, there was no effect on the quality of jabuticaba peel powder up to 135 storage days. Generally, the obtained peels by crushing showed the highest contents of flavonoids, phenolic compounds and antioxidant activity by DPPH method. Therefore, antioxidants of this product in yogurt is a promising alternative, since the results showed good rates for both genotypes and extraction treatments (steam/crushing). Wherefore, this process not only provides some proper disposal for waste but also uses important nutrients and natural dyes to add value to several kinds of foodstuff.
publishDate 2016
dc.date.available.fl_str_mv 2016-07-22
dc.date.issued.fl_str_mv 2016-02-05
dc.date.accessioned.fl_str_mv 2017-05-12T14:47:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MOURA, Cláudia de Andrade. Characterization and application of jabuticaba peel from a processing residue. 2016. 135 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2016.
dc.identifier.uri.fl_str_mv http://tede.unioeste.br:8080/tede/handle/tede/268
identifier_str_mv MOURA, Cláudia de Andrade. Characterization and application of jabuticaba peel from a processing residue. 2016. 135 f. Tese (Doutorado em Engenharia) - Universidade Estadual do Oeste do Parana, Cascavel, 2016.
url http://tede.unioeste.br:8080/tede/handle/tede/268
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Estadual do Oeste do Parana
dc.publisher.program.fl_str_mv Programa de Pós-Graduação "Stricto Sensu" em Engenharia Agrícola
dc.publisher.initials.fl_str_mv UNIOESTE
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Engenharia
publisher.none.fl_str_mv Universidade Estadual do Oeste do Parana
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações do UNIOESTE
instname:Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron:UNIOESTE
instname_str Universidade Estadual do Oeste do Paraná (UNIOESTE)
instacron_str UNIOESTE
institution UNIOESTE
reponame_str Biblioteca Digital de Teses e Dissertações do UNIOESTE
collection Biblioteca Digital de Teses e Dissertações do UNIOESTE
bitstream.url.fl_str_mv http://tede.unioeste.br:8080/tede/bitstream/tede/268/1/Claudia_+Moura+%28Tese+revisada%29+%281%29.pdf
bitstream.checksum.fl_str_mv 0a37c7fb902019cf109ae32f1afc5dde
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações do UNIOESTE - Universidade Estadual do Oeste do Paraná (UNIOESTE)
repository.mail.fl_str_mv biblioteca.repositorio@unioeste.br
_version_ 1801124514401091584