Using model updating technique to train neural network for fault detection

Detalhes bibliográficos
Autor(a) principal: Lopes, Vicente [UNESP]
Data de Publicação: 1997
Outros Autores: Pereira, João Antonio [UNESP], Weber, Hans Ingo
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1115/DETC97/VIB-4233
http://hdl.handle.net/11449/228909
Resumo: Vibration monitoring and fault detection of components in manufacturing plants involve a detailed analysis of a collection of vibration data in order to establish a correlation among changes of the measured data and the corresponding fault. This work presents an alternative proposal which intent is to exploit the capability of model updating techniques associated to neural networks to reduce the amount of measured data. The updating procedure supplies a reliable model that permits to simulate any damage condition, which allows to establish a direct correlation between the deviation of the response and the corresponding fault. The learning of the net is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data and finally, the capability of the proposal is demonstrated using experimental data.
id UNSP_019a673bf6dbd348e14edeb5dca768ad
oai_identifier_str oai:repositorio.unesp.br:11449/228909
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Using model updating technique to train neural network for fault detectionFault classificationModel updatingNeural networkPredictive maintenanceVibration monitoring and fault detection of components in manufacturing plants involve a detailed analysis of a collection of vibration data in order to establish a correlation among changes of the measured data and the corresponding fault. This work presents an alternative proposal which intent is to exploit the capability of model updating techniques associated to neural networks to reduce the amount of measured data. The updating procedure supplies a reliable model that permits to simulate any damage condition, which allows to establish a direct correlation between the deviation of the response and the corresponding fault. The learning of the net is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data and finally, the capability of the proposal is demonstrated using experimental data.Dep. de Eng. Mecanica -UNESP Ilha SolteiraFac. de Eng. Mecânica de Campinas - UNICAMPDep. de Eng. Mecanica -UNESP Ilha SolteiraUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Lopes, Vicente [UNESP]Pereira, João Antonio [UNESP]Weber, Hans Ingo2022-04-29T08:29:23Z2022-04-29T08:29:23Z1997-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1115/DETC97/VIB-4233Proceedings of the ASME Design Engineering Technical Conference, v. 1D-1997.http://hdl.handle.net/11449/22890910.1115/DETC97/VIB-42332-s2.0-85102071392Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the ASME Design Engineering Technical Conferenceinfo:eu-repo/semantics/openAccess2024-07-04T20:06:42Zoai:repositorio.unesp.br:11449/228909Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:59:57.939221Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Using model updating technique to train neural network for fault detection
title Using model updating technique to train neural network for fault detection
spellingShingle Using model updating technique to train neural network for fault detection
Lopes, Vicente [UNESP]
Fault classification
Model updating
Neural network
Predictive maintenance
title_short Using model updating technique to train neural network for fault detection
title_full Using model updating technique to train neural network for fault detection
title_fullStr Using model updating technique to train neural network for fault detection
title_full_unstemmed Using model updating technique to train neural network for fault detection
title_sort Using model updating technique to train neural network for fault detection
author Lopes, Vicente [UNESP]
author_facet Lopes, Vicente [UNESP]
Pereira, João Antonio [UNESP]
Weber, Hans Ingo
author_role author
author2 Pereira, João Antonio [UNESP]
Weber, Hans Ingo
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Lopes, Vicente [UNESP]
Pereira, João Antonio [UNESP]
Weber, Hans Ingo
dc.subject.por.fl_str_mv Fault classification
Model updating
Neural network
Predictive maintenance
topic Fault classification
Model updating
Neural network
Predictive maintenance
description Vibration monitoring and fault detection of components in manufacturing plants involve a detailed analysis of a collection of vibration data in order to establish a correlation among changes of the measured data and the corresponding fault. This work presents an alternative proposal which intent is to exploit the capability of model updating techniques associated to neural networks to reduce the amount of measured data. The updating procedure supplies a reliable model that permits to simulate any damage condition, which allows to establish a direct correlation between the deviation of the response and the corresponding fault. The learning of the net is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data and finally, the capability of the proposal is demonstrated using experimental data.
publishDate 1997
dc.date.none.fl_str_mv 1997-01-01
2022-04-29T08:29:23Z
2022-04-29T08:29:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1115/DETC97/VIB-4233
Proceedings of the ASME Design Engineering Technical Conference, v. 1D-1997.
http://hdl.handle.net/11449/228909
10.1115/DETC97/VIB-4233
2-s2.0-85102071392
url http://dx.doi.org/10.1115/DETC97/VIB-4233
http://hdl.handle.net/11449/228909
identifier_str_mv Proceedings of the ASME Design Engineering Technical Conference, v. 1D-1997.
10.1115/DETC97/VIB-4233
2-s2.0-85102071392
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings of the ASME Design Engineering Technical Conference
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129480395325440