Using model updating technique to train neural network for fault detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 1997 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1115/DETC97/VIB-4233 http://hdl.handle.net/11449/228909 |
Resumo: | Vibration monitoring and fault detection of components in manufacturing plants involve a detailed analysis of a collection of vibration data in order to establish a correlation among changes of the measured data and the corresponding fault. This work presents an alternative proposal which intent is to exploit the capability of model updating techniques associated to neural networks to reduce the amount of measured data. The updating procedure supplies a reliable model that permits to simulate any damage condition, which allows to establish a direct correlation between the deviation of the response and the corresponding fault. The learning of the net is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data and finally, the capability of the proposal is demonstrated using experimental data. |
id |
UNSP_019a673bf6dbd348e14edeb5dca768ad |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/228909 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Using model updating technique to train neural network for fault detectionFault classificationModel updatingNeural networkPredictive maintenanceVibration monitoring and fault detection of components in manufacturing plants involve a detailed analysis of a collection of vibration data in order to establish a correlation among changes of the measured data and the corresponding fault. This work presents an alternative proposal which intent is to exploit the capability of model updating techniques associated to neural networks to reduce the amount of measured data. The updating procedure supplies a reliable model that permits to simulate any damage condition, which allows to establish a direct correlation between the deviation of the response and the corresponding fault. The learning of the net is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data and finally, the capability of the proposal is demonstrated using experimental data.Dep. de Eng. Mecanica -UNESP Ilha SolteiraFac. de Eng. Mecânica de Campinas - UNICAMPDep. de Eng. Mecanica -UNESP Ilha SolteiraUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Lopes, Vicente [UNESP]Pereira, João Antonio [UNESP]Weber, Hans Ingo2022-04-29T08:29:23Z2022-04-29T08:29:23Z1997-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1115/DETC97/VIB-4233Proceedings of the ASME Design Engineering Technical Conference, v. 1D-1997.http://hdl.handle.net/11449/22890910.1115/DETC97/VIB-42332-s2.0-85102071392Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the ASME Design Engineering Technical Conferenceinfo:eu-repo/semantics/openAccess2024-07-04T20:06:42Zoai:repositorio.unesp.br:11449/228909Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:59:57.939221Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Using model updating technique to train neural network for fault detection |
title |
Using model updating technique to train neural network for fault detection |
spellingShingle |
Using model updating technique to train neural network for fault detection Lopes, Vicente [UNESP] Fault classification Model updating Neural network Predictive maintenance |
title_short |
Using model updating technique to train neural network for fault detection |
title_full |
Using model updating technique to train neural network for fault detection |
title_fullStr |
Using model updating technique to train neural network for fault detection |
title_full_unstemmed |
Using model updating technique to train neural network for fault detection |
title_sort |
Using model updating technique to train neural network for fault detection |
author |
Lopes, Vicente [UNESP] |
author_facet |
Lopes, Vicente [UNESP] Pereira, João Antonio [UNESP] Weber, Hans Ingo |
author_role |
author |
author2 |
Pereira, João Antonio [UNESP] Weber, Hans Ingo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Lopes, Vicente [UNESP] Pereira, João Antonio [UNESP] Weber, Hans Ingo |
dc.subject.por.fl_str_mv |
Fault classification Model updating Neural network Predictive maintenance |
topic |
Fault classification Model updating Neural network Predictive maintenance |
description |
Vibration monitoring and fault detection of components in manufacturing plants involve a detailed analysis of a collection of vibration data in order to establish a correlation among changes of the measured data and the corresponding fault. This work presents an alternative proposal which intent is to exploit the capability of model updating techniques associated to neural networks to reduce the amount of measured data. The updating procedure supplies a reliable model that permits to simulate any damage condition, which allows to establish a direct correlation between the deviation of the response and the corresponding fault. The learning of the net is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data and finally, the capability of the proposal is demonstrated using experimental data. |
publishDate |
1997 |
dc.date.none.fl_str_mv |
1997-01-01 2022-04-29T08:29:23Z 2022-04-29T08:29:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1115/DETC97/VIB-4233 Proceedings of the ASME Design Engineering Technical Conference, v. 1D-1997. http://hdl.handle.net/11449/228909 10.1115/DETC97/VIB-4233 2-s2.0-85102071392 |
url |
http://dx.doi.org/10.1115/DETC97/VIB-4233 http://hdl.handle.net/11449/228909 |
identifier_str_mv |
Proceedings of the ASME Design Engineering Technical Conference, v. 1D-1997. 10.1115/DETC97/VIB-4233 2-s2.0-85102071392 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the ASME Design Engineering Technical Conference |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129480395325440 |