Automation in fault detection using neural network and model updating
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://revistas.abcm.org.br/indexed/vol_xxi_-_n_01_-_1999.pdf http://hdl.handle.net/11449/65736 |
Resumo: | In this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data. |
id |
UNSP_a89061b0cb7158340d8f7cba86e3d009 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/65736 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Automation in fault detection using neural network and model updatingDynamic responseLearning systemsMaintenanceMathematical modelsStructural analysisFault detectionStructural health monitoringNeural networksIn this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data.UNESP - Univ. Estadual Paulista Faculdade Engenharia Ilha Solteira Departamento Engenharia Mecanica, 15385-000 Ilha Solteira, SPUNICAMP - Univ. Estadual de Campinas Faculdade de Engenharia Mecanica Depto. de Projeto Mecânico, 13083-970 Campinas, SPUNESP - Univ. Estadual Paulista Faculdade Engenharia Ilha Solteira Departamento Engenharia Mecanica, 15385-000 Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Pereira, João Antonio [UNESP]Lopes Jr., Vicente [UNESP]Weber, Hans Ingo2014-05-27T11:19:43Z2014-05-27T11:19:43Z1999-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article99-108application/pdfhttp://revistas.abcm.org.br/indexed/vol_xxi_-_n_01_-_1999.pdfRevista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, v. 21, n. 1, p. 99-108, 1999.0100-7386http://hdl.handle.net/11449/657362-s2.0-00326785952-s2.0-0032678595.pdf0224087261544502Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciencesinfo:eu-repo/semantics/openAccess2024-07-04T20:06:14Zoai:repositorio.unesp.br:11449/65736Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:27:01.017001Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Automation in fault detection using neural network and model updating |
title |
Automation in fault detection using neural network and model updating |
spellingShingle |
Automation in fault detection using neural network and model updating Pereira, João Antonio [UNESP] Dynamic response Learning systems Maintenance Mathematical models Structural analysis Fault detection Structural health monitoring Neural networks |
title_short |
Automation in fault detection using neural network and model updating |
title_full |
Automation in fault detection using neural network and model updating |
title_fullStr |
Automation in fault detection using neural network and model updating |
title_full_unstemmed |
Automation in fault detection using neural network and model updating |
title_sort |
Automation in fault detection using neural network and model updating |
author |
Pereira, João Antonio [UNESP] |
author_facet |
Pereira, João Antonio [UNESP] Lopes Jr., Vicente [UNESP] Weber, Hans Ingo |
author_role |
author |
author2 |
Lopes Jr., Vicente [UNESP] Weber, Hans Ingo |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Pereira, João Antonio [UNESP] Lopes Jr., Vicente [UNESP] Weber, Hans Ingo |
dc.subject.por.fl_str_mv |
Dynamic response Learning systems Maintenance Mathematical models Structural analysis Fault detection Structural health monitoring Neural networks |
topic |
Dynamic response Learning systems Maintenance Mathematical models Structural analysis Fault detection Structural health monitoring Neural networks |
description |
In this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-03-01 2014-05-27T11:19:43Z 2014-05-27T11:19:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://revistas.abcm.org.br/indexed/vol_xxi_-_n_01_-_1999.pdf Revista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, v. 21, n. 1, p. 99-108, 1999. 0100-7386 http://hdl.handle.net/11449/65736 2-s2.0-0032678595 2-s2.0-0032678595.pdf 0224087261544502 |
url |
http://revistas.abcm.org.br/indexed/vol_xxi_-_n_01_-_1999.pdf http://hdl.handle.net/11449/65736 |
identifier_str_mv |
Revista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, v. 21, n. 1, p. 99-108, 1999. 0100-7386 2-s2.0-0032678595 2-s2.0-0032678595.pdf 0224087261544502 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Revista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
99-108 application/pdf |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128934564331520 |