Automation in fault detection using neural network and model updating

Detalhes bibliográficos
Autor(a) principal: Pereira, João Antonio [UNESP]
Data de Publicação: 1999
Outros Autores: Lopes Jr., Vicente [UNESP], Weber, Hans Ingo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://revistas.abcm.org.br/indexed/vol_xxi_-_n_01_-_1999.pdf
http://hdl.handle.net/11449/65736
Resumo: In this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data.
id UNSP_a89061b0cb7158340d8f7cba86e3d009
oai_identifier_str oai:repositorio.unesp.br:11449/65736
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Automation in fault detection using neural network and model updatingDynamic responseLearning systemsMaintenanceMathematical modelsStructural analysisFault detectionStructural health monitoringNeural networksIn this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data.UNESP - Univ. Estadual Paulista Faculdade Engenharia Ilha Solteira Departamento Engenharia Mecanica, 15385-000 Ilha Solteira, SPUNICAMP - Univ. Estadual de Campinas Faculdade de Engenharia Mecanica Depto. de Projeto Mecânico, 13083-970 Campinas, SPUNESP - Univ. Estadual Paulista Faculdade Engenharia Ilha Solteira Departamento Engenharia Mecanica, 15385-000 Ilha Solteira, SPUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Pereira, João Antonio [UNESP]Lopes Jr., Vicente [UNESP]Weber, Hans Ingo2014-05-27T11:19:43Z2014-05-27T11:19:43Z1999-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article99-108application/pdfhttp://revistas.abcm.org.br/indexed/vol_xxi_-_n_01_-_1999.pdfRevista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, v. 21, n. 1, p. 99-108, 1999.0100-7386http://hdl.handle.net/11449/657362-s2.0-00326785952-s2.0-0032678595.pdf0224087261544502Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengRevista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciencesinfo:eu-repo/semantics/openAccess2024-07-04T20:06:14Zoai:repositorio.unesp.br:11449/65736Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:27:01.017001Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Automation in fault detection using neural network and model updating
title Automation in fault detection using neural network and model updating
spellingShingle Automation in fault detection using neural network and model updating
Pereira, João Antonio [UNESP]
Dynamic response
Learning systems
Maintenance
Mathematical models
Structural analysis
Fault detection
Structural health monitoring
Neural networks
title_short Automation in fault detection using neural network and model updating
title_full Automation in fault detection using neural network and model updating
title_fullStr Automation in fault detection using neural network and model updating
title_full_unstemmed Automation in fault detection using neural network and model updating
title_sort Automation in fault detection using neural network and model updating
author Pereira, João Antonio [UNESP]
author_facet Pereira, João Antonio [UNESP]
Lopes Jr., Vicente [UNESP]
Weber, Hans Ingo
author_role author
author2 Lopes Jr., Vicente [UNESP]
Weber, Hans Ingo
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Pereira, João Antonio [UNESP]
Lopes Jr., Vicente [UNESP]
Weber, Hans Ingo
dc.subject.por.fl_str_mv Dynamic response
Learning systems
Maintenance
Mathematical models
Structural analysis
Fault detection
Structural health monitoring
Neural networks
topic Dynamic response
Learning systems
Maintenance
Mathematical models
Structural analysis
Fault detection
Structural health monitoring
Neural networks
description In this article, an implementation of structural health monitoring process automation based on vibration measurements is proposed. The work presents an alternative approach which intent is to exploit the capability of model updating techniques associated to neural networks to be used in a process of automation of fault detection. The updating procedure supplies a reliable model which permits to simulate any damage condition in order to establish direct correlation between faults and deviation in the response of the model. The ability of the neural networks to recognize, at known signature, changes in the actual data of a model in real time are explored to investigate changes of the actual operation conditions of the system. The learning of the network is performed using a compressed spectrum signal created for each specific type of fault. Different fault conditions for a frame structure are evaluated using simulated data as well as measured experimental data.
publishDate 1999
dc.date.none.fl_str_mv 1999-03-01
2014-05-27T11:19:43Z
2014-05-27T11:19:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://revistas.abcm.org.br/indexed/vol_xxi_-_n_01_-_1999.pdf
Revista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, v. 21, n. 1, p. 99-108, 1999.
0100-7386
http://hdl.handle.net/11449/65736
2-s2.0-0032678595
2-s2.0-0032678595.pdf
0224087261544502
url http://revistas.abcm.org.br/indexed/vol_xxi_-_n_01_-_1999.pdf
http://hdl.handle.net/11449/65736
identifier_str_mv Revista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences, v. 21, n. 1, p. 99-108, 1999.
0100-7386
2-s2.0-0032678595
2-s2.0-0032678595.pdf
0224087261544502
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Revista Brasileira de Ciencias Mecanicas/Journal of the Brazilian Society of Mechanical Sciences
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 99-108
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128934564331520