Unsupervised non-technical losses identification through optimum-path forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.epsr.2016.05.036 http://hdl.handle.net/11449/161932 |
Resumo: | Non-technical losses (NTL) identification has been paramount in the last years. However, it is not straightforward to obtain labelled datasets to perform a supervised NTL recognition task. In this paper, the optimum-path forest (OPF) clustering algorithm has been employed to identify irregular and regular profiles of commercial and industrial consumers obtained from a Brazilian electrical power company. Additionally, a model for the problem of NTL recognition as an anomaly detection task has been proposed when there are little or no information about irregular consumers. For such purpose, two new approaches based on the OPF framework have been introduced and compared against the well-known k-means, Gaussian mixture model, Birch, affinity propagation and one-class support vector machines. The experimental results have shown the robustness of OPF for both unsupervised NTL recognition and anomaly detection problems. In short, the main contributions of this paper are fourfold: (i) to employ unsupervised OPF for non-technical losses detection, (ii) to model the problem of NTL as being an anomaly detection task, (iii) to employ unsupervised OPF to estimate the parameters of the Gaussian distributions, and (iv) to present an anomaly detection approach based on unsupervised optimum-path forest. (C) 2016 Elsevier B.V. All rights reserved. |
id |
UNSP_0829e1150bff4edfa4634cda81adb688 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/161932 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Unsupervised non-technical losses identification through optimum-path forestNon-technical lossesOptimum-path forestClusteringAnomaly detectionNon-technical losses (NTL) identification has been paramount in the last years. However, it is not straightforward to obtain labelled datasets to perform a supervised NTL recognition task. In this paper, the optimum-path forest (OPF) clustering algorithm has been employed to identify irregular and regular profiles of commercial and industrial consumers obtained from a Brazilian electrical power company. Additionally, a model for the problem of NTL recognition as an anomaly detection task has been proposed when there are little or no information about irregular consumers. For such purpose, two new approaches based on the OPF framework have been introduced and compared against the well-known k-means, Gaussian mixture model, Birch, affinity propagation and one-class support vector machines. The experimental results have shown the robustness of OPF for both unsupervised NTL recognition and anomaly detection problems. In short, the main contributions of this paper are fourfold: (i) to employ unsupervised OPF for non-technical losses detection, (ii) to model the problem of NTL as being an anomaly detection task, (iii) to employ unsupervised OPF to estimate the parameters of the Gaussian distributions, and (iv) to present an anomaly detection approach based on unsupervised optimum-path forest. (C) 2016 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilSao Paulo State Univ, Dept Comp, Bauru, BrazilSao Paulo State Univ, Dept Elect Engn, Bauru, BrazilSao Paulo State Univ, Dept Comp, Bauru, BrazilSao Paulo State Univ, Dept Elect Engn, Bauru, BrazilFAPESP: 2009/16206-1FAPESP: 2012/14158-2FAPESP: 2013/20387-7FAPESP: 2014/16250-9FAPESP: 2015/00801-9CNPq: 303182/2011-3CNPq: 470571/2013-6CNPq: 306166/2014-3Elsevier B.V.Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Passos Junior, Leandro AparecidoOba Ramos, Caio Cesar [UNESP]Rodrigues, DouglasPereira, Danillo Roberto [UNESP]Souza, Andre Nunes de [UNESP]Pontara da Costa, Kelton Augusto [UNESP]Papa, Joao Paulo [UNESP]2018-11-26T17:06:13Z2018-11-26T17:06:13Z2016-11-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article413-423application/pdfhttp://dx.doi.org/10.1016/j.epsr.2016.05.036Electric Power Systems Research. Lausanne: Elsevier Science Sa, v. 140, p. 413-423, 2016.0378-7796http://hdl.handle.net/11449/16193210.1016/j.epsr.2016.05.036WOS:000383527300044WOS000383527300044.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengElectric Power Systems Research1,048info:eu-repo/semantics/openAccess2024-06-28T13:34:25Zoai:repositorio.unesp.br:11449/161932Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:08:47.946414Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Unsupervised non-technical losses identification through optimum-path forest |
title |
Unsupervised non-technical losses identification through optimum-path forest |
spellingShingle |
Unsupervised non-technical losses identification through optimum-path forest Passos Junior, Leandro Aparecido Non-technical losses Optimum-path forest Clustering Anomaly detection |
title_short |
Unsupervised non-technical losses identification through optimum-path forest |
title_full |
Unsupervised non-technical losses identification through optimum-path forest |
title_fullStr |
Unsupervised non-technical losses identification through optimum-path forest |
title_full_unstemmed |
Unsupervised non-technical losses identification through optimum-path forest |
title_sort |
Unsupervised non-technical losses identification through optimum-path forest |
author |
Passos Junior, Leandro Aparecido |
author_facet |
Passos Junior, Leandro Aparecido Oba Ramos, Caio Cesar [UNESP] Rodrigues, Douglas Pereira, Danillo Roberto [UNESP] Souza, Andre Nunes de [UNESP] Pontara da Costa, Kelton Augusto [UNESP] Papa, Joao Paulo [UNESP] |
author_role |
author |
author2 |
Oba Ramos, Caio Cesar [UNESP] Rodrigues, Douglas Pereira, Danillo Roberto [UNESP] Souza, Andre Nunes de [UNESP] Pontara da Costa, Kelton Augusto [UNESP] Papa, Joao Paulo [UNESP] |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Passos Junior, Leandro Aparecido Oba Ramos, Caio Cesar [UNESP] Rodrigues, Douglas Pereira, Danillo Roberto [UNESP] Souza, Andre Nunes de [UNESP] Pontara da Costa, Kelton Augusto [UNESP] Papa, Joao Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Non-technical losses Optimum-path forest Clustering Anomaly detection |
topic |
Non-technical losses Optimum-path forest Clustering Anomaly detection |
description |
Non-technical losses (NTL) identification has been paramount in the last years. However, it is not straightforward to obtain labelled datasets to perform a supervised NTL recognition task. In this paper, the optimum-path forest (OPF) clustering algorithm has been employed to identify irregular and regular profiles of commercial and industrial consumers obtained from a Brazilian electrical power company. Additionally, a model for the problem of NTL recognition as an anomaly detection task has been proposed when there are little or no information about irregular consumers. For such purpose, two new approaches based on the OPF framework have been introduced and compared against the well-known k-means, Gaussian mixture model, Birch, affinity propagation and one-class support vector machines. The experimental results have shown the robustness of OPF for both unsupervised NTL recognition and anomaly detection problems. In short, the main contributions of this paper are fourfold: (i) to employ unsupervised OPF for non-technical losses detection, (ii) to model the problem of NTL as being an anomaly detection task, (iii) to employ unsupervised OPF to estimate the parameters of the Gaussian distributions, and (iv) to present an anomaly detection approach based on unsupervised optimum-path forest. (C) 2016 Elsevier B.V. All rights reserved. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-11-01 2018-11-26T17:06:13Z 2018-11-26T17:06:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.epsr.2016.05.036 Electric Power Systems Research. Lausanne: Elsevier Science Sa, v. 140, p. 413-423, 2016. 0378-7796 http://hdl.handle.net/11449/161932 10.1016/j.epsr.2016.05.036 WOS:000383527300044 WOS000383527300044.pdf |
url |
http://dx.doi.org/10.1016/j.epsr.2016.05.036 http://hdl.handle.net/11449/161932 |
identifier_str_mv |
Electric Power Systems Research. Lausanne: Elsevier Science Sa, v. 140, p. 413-423, 2016. 0378-7796 10.1016/j.epsr.2016.05.036 WOS:000383527300044 WOS000383527300044.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Electric Power Systems Research 1,048 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
413-423 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129589331886080 |