Fast non-technical losses identification through Optimum-Path Forest

Detalhes bibliográficos
Autor(a) principal: Ramos, Caio C. O. [UNESP]
Data de Publicação: 2009
Outros Autores: Souza, André N. [UNESP], Papa, João P., Falcão, Alexandre X.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/ISAP.2009.5352910
http://hdl.handle.net/11449/71478
Resumo: Fraud detection in energy systems by illegal consumers is the most actively pursued study in non-technical losses by electric power companies. Commonly used supervised pattern recognition techniques, such as Artificial Neural Networks and Support Vector Machines have been applied for automatic commercial frauds identification, however they suffer from slow convergence and high computational burden. We introduced here the Optimum-Path Forest classifier for a fast non-technical losses recognition, which has been demonstrated to be superior than neural networks and similar to Support Vector Machines, but much faster. Comparisons among these classifiers are also presented. © 2009 IEEE.
id UNSP_30c3491c6a48996478a3e2d4ce5e7c32
oai_identifier_str oai:repositorio.unesp.br:11449/71478
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fast non-technical losses identification through Optimum-Path ForestNon-technical lossesOptimum-path forestArtificial Neural NetworkComputational burdenElectric power companyEnergy systemsForest classifiersFraud detectionNon-technical lossSupervised pattern recognitionClassifiersElectric lossesElectric utilitiesIntelligent systemsPattern recognitionSupport vector machinesNeural networksFraud detection in energy systems by illegal consumers is the most actively pursued study in non-technical losses by electric power companies. Commonly used supervised pattern recognition techniques, such as Artificial Neural Networks and Support Vector Machines have been applied for automatic commercial frauds identification, however they suffer from slow convergence and high computational burden. We introduced here the Optimum-Path Forest classifier for a fast non-technical losses recognition, which has been demonstrated to be superior than neural networks and similar to Support Vector Machines, but much faster. Comparisons among these classifiers are also presented. © 2009 IEEE.Department of Electrical Engineering São Paulo State University, Bauru, São PauloInstitute of Computing University of Campinas, Campinas, São PauloDepartment of Electrical Engineering São Paulo State University, Bauru, São PauloUniversidade Estadual Paulista (Unesp)Universidade Estadual de Campinas (UNICAMP)Ramos, Caio C. O. [UNESP]Souza, André N. [UNESP]Papa, João P.Falcão, Alexandre X.2014-05-27T11:24:34Z2014-05-27T11:24:34Z2009-12-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ISAP.2009.53529102009 15th International Conference on Intelligent System Applications to Power Systems, ISAP '09.http://hdl.handle.net/11449/7147810.1109/ISAP.2009.53529102-s2.0-765490907858212775960494686Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2009 15th International Conference on Intelligent System Applications to Power Systems, ISAP '09info:eu-repo/semantics/openAccess2024-06-28T13:34:36Zoai:repositorio.unesp.br:11449/71478Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:54:54.037470Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fast non-technical losses identification through Optimum-Path Forest
title Fast non-technical losses identification through Optimum-Path Forest
spellingShingle Fast non-technical losses identification through Optimum-Path Forest
Ramos, Caio C. O. [UNESP]
Non-technical losses
Optimum-path forest
Artificial Neural Network
Computational burden
Electric power company
Energy systems
Forest classifiers
Fraud detection
Non-technical loss
Supervised pattern recognition
Classifiers
Electric losses
Electric utilities
Intelligent systems
Pattern recognition
Support vector machines
Neural networks
title_short Fast non-technical losses identification through Optimum-Path Forest
title_full Fast non-technical losses identification through Optimum-Path Forest
title_fullStr Fast non-technical losses identification through Optimum-Path Forest
title_full_unstemmed Fast non-technical losses identification through Optimum-Path Forest
title_sort Fast non-technical losses identification through Optimum-Path Forest
author Ramos, Caio C. O. [UNESP]
author_facet Ramos, Caio C. O. [UNESP]
Souza, André N. [UNESP]
Papa, João P.
Falcão, Alexandre X.
author_role author
author2 Souza, André N. [UNESP]
Papa, João P.
Falcão, Alexandre X.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Ramos, Caio C. O. [UNESP]
Souza, André N. [UNESP]
Papa, João P.
Falcão, Alexandre X.
dc.subject.por.fl_str_mv Non-technical losses
Optimum-path forest
Artificial Neural Network
Computational burden
Electric power company
Energy systems
Forest classifiers
Fraud detection
Non-technical loss
Supervised pattern recognition
Classifiers
Electric losses
Electric utilities
Intelligent systems
Pattern recognition
Support vector machines
Neural networks
topic Non-technical losses
Optimum-path forest
Artificial Neural Network
Computational burden
Electric power company
Energy systems
Forest classifiers
Fraud detection
Non-technical loss
Supervised pattern recognition
Classifiers
Electric losses
Electric utilities
Intelligent systems
Pattern recognition
Support vector machines
Neural networks
description Fraud detection in energy systems by illegal consumers is the most actively pursued study in non-technical losses by electric power companies. Commonly used supervised pattern recognition techniques, such as Artificial Neural Networks and Support Vector Machines have been applied for automatic commercial frauds identification, however they suffer from slow convergence and high computational burden. We introduced here the Optimum-Path Forest classifier for a fast non-technical losses recognition, which has been demonstrated to be superior than neural networks and similar to Support Vector Machines, but much faster. Comparisons among these classifiers are also presented. © 2009 IEEE.
publishDate 2009
dc.date.none.fl_str_mv 2009-12-09
2014-05-27T11:24:34Z
2014-05-27T11:24:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/ISAP.2009.5352910
2009 15th International Conference on Intelligent System Applications to Power Systems, ISAP '09.
http://hdl.handle.net/11449/71478
10.1109/ISAP.2009.5352910
2-s2.0-76549090785
8212775960494686
url http://dx.doi.org/10.1109/ISAP.2009.5352910
http://hdl.handle.net/11449/71478
identifier_str_mv 2009 15th International Conference on Intelligent System Applications to Power Systems, ISAP '09.
10.1109/ISAP.2009.5352910
2-s2.0-76549090785
8212775960494686
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2009 15th International Conference on Intelligent System Applications to Power Systems, ISAP '09
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128998758154240