Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1021/acs.nanolett.9b04355 http://hdl.handle.net/11449/195204 |
Resumo: | Memristors (MRs) are considered promising devices with the enormous potential to replace complementary metal-oxide-semiconductor (CMOS) technology, which approaches the scale limit. Efforts to fabricate MRs-based hybrid materials may result in suitable operating parameters coupled to high mechanical flexibility and low cost. Metal-organic frameworks (MOFs) arise as a favorable candidate to cover such demands. The step-by-step growth of MOFs structures on functionalized surfaces, called surface-supported metal-organic frameworks (SURMOFs), opens the possibility for designing new applications in strategic fields such as electronics, optoelectronics, and energy harvesting. However, considering the MRs architecture, the typical high porosity of these hybrid materials may lead to short-circuited devices easily. In this sense, here, it is reported for the first time the integration of SURMOF films in rolled-up scalable-functional devices. A freestanding metallic nanomembrane provides a robust and self-adjusted top mechanical contact on the SURMOF layer. The electrical characterization reveals an ambipolar resistive switching mediated by the humidity level with low-power consumption. The electronic properties are investigated with density functional theory (DFT) calculations. Furthermore, the device concept is versatile, compatible with the current parallelism demands of integration, and transcends the challenge in contacting SURMOF films for scalable-functional devices. |
id |
UNSP_0f387286c523cb654b03d2fce8818402 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/195204 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical HeterojunctionMetal-organic frameworks (MOFs)HKUST-1resistive switchingscalable-functional devicesstrained nanomembranesMemristors (MRs) are considered promising devices with the enormous potential to replace complementary metal-oxide-semiconductor (CMOS) technology, which approaches the scale limit. Efforts to fabricate MRs-based hybrid materials may result in suitable operating parameters coupled to high mechanical flexibility and low cost. Metal-organic frameworks (MOFs) arise as a favorable candidate to cover such demands. The step-by-step growth of MOFs structures on functionalized surfaces, called surface-supported metal-organic frameworks (SURMOFs), opens the possibility for designing new applications in strategic fields such as electronics, optoelectronics, and energy harvesting. However, considering the MRs architecture, the typical high porosity of these hybrid materials may lead to short-circuited devices easily. In this sense, here, it is reported for the first time the integration of SURMOF films in rolled-up scalable-functional devices. A freestanding metallic nanomembrane provides a robust and self-adjusted top mechanical contact on the SURMOF layer. The electrical characterization reveals an ambipolar resistive switching mediated by the humidity level with low-power consumption. The electronic properties are investigated with density functional theory (DFT) calculations. Furthermore, the device concept is versatile, compatible with the current parallelism demands of integration, and transcends the challenge in contacting SURMOF films for scalable-functional devices.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Brazilian Ctr Res Energy & Mat CNPEM, Campinas, BrazilUniv Campinas UNICAMP, Campinas, BrazilSao Paulo State Univ UNESP, Bauru, SP, BrazilSao Paulo State Univ UNESP, Bauru, SP, BrazilCNPq: 465452/2014-0CNPq: 305305/2016-6CNPq: 408770/2018/0FAPESP: 2014/25979-2FAPESP: 2016/25346-5FAPESP: 2017/02317-2FAPESP: 2017/25553-3FAPESP: 2018/05565-0FAPESP: 2014/50906-9Amer Chemical SocBrazilian Ctr Res Energy & Mat CNPEMUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Albano, Luiz G. S.Vello, Tatiana P.Camargo, Davi H. S. de [UNESP]Silva, Ricardo M. L. da [UNESP]Padilha, Antonio C. M.Fazzio, AdalbertoBufon, Carlos C. B. [UNESP]2020-12-10T17:26:44Z2020-12-10T17:26:44Z2020-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1080-1088http://dx.doi.org/10.1021/acs.nanolett.9b04355Nano Letters. Washington: Amer Chemical Soc, v. 20, n. 2, p. 1080-1088, 2020.1530-6984http://hdl.handle.net/11449/19520410.1021/acs.nanolett.9b04355WOS:000514255400034Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNano Lettersinfo:eu-repo/semantics/openAccess2021-10-23T05:55:41Zoai:repositorio.unesp.br:11449/195204Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:38:12.342361Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction |
title |
Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction |
spellingShingle |
Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction Albano, Luiz G. S. Metal-organic frameworks (MOFs) HKUST-1 resistive switching scalable-functional devices strained nanomembranes |
title_short |
Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction |
title_full |
Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction |
title_fullStr |
Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction |
title_full_unstemmed |
Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction |
title_sort |
Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction |
author |
Albano, Luiz G. S. |
author_facet |
Albano, Luiz G. S. Vello, Tatiana P. Camargo, Davi H. S. de [UNESP] Silva, Ricardo M. L. da [UNESP] Padilha, Antonio C. M. Fazzio, Adalberto Bufon, Carlos C. B. [UNESP] |
author_role |
author |
author2 |
Vello, Tatiana P. Camargo, Davi H. S. de [UNESP] Silva, Ricardo M. L. da [UNESP] Padilha, Antonio C. M. Fazzio, Adalberto Bufon, Carlos C. B. [UNESP] |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Brazilian Ctr Res Energy & Mat CNPEM Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Albano, Luiz G. S. Vello, Tatiana P. Camargo, Davi H. S. de [UNESP] Silva, Ricardo M. L. da [UNESP] Padilha, Antonio C. M. Fazzio, Adalberto Bufon, Carlos C. B. [UNESP] |
dc.subject.por.fl_str_mv |
Metal-organic frameworks (MOFs) HKUST-1 resistive switching scalable-functional devices strained nanomembranes |
topic |
Metal-organic frameworks (MOFs) HKUST-1 resistive switching scalable-functional devices strained nanomembranes |
description |
Memristors (MRs) are considered promising devices with the enormous potential to replace complementary metal-oxide-semiconductor (CMOS) technology, which approaches the scale limit. Efforts to fabricate MRs-based hybrid materials may result in suitable operating parameters coupled to high mechanical flexibility and low cost. Metal-organic frameworks (MOFs) arise as a favorable candidate to cover such demands. The step-by-step growth of MOFs structures on functionalized surfaces, called surface-supported metal-organic frameworks (SURMOFs), opens the possibility for designing new applications in strategic fields such as electronics, optoelectronics, and energy harvesting. However, considering the MRs architecture, the typical high porosity of these hybrid materials may lead to short-circuited devices easily. In this sense, here, it is reported for the first time the integration of SURMOF films in rolled-up scalable-functional devices. A freestanding metallic nanomembrane provides a robust and self-adjusted top mechanical contact on the SURMOF layer. The electrical characterization reveals an ambipolar resistive switching mediated by the humidity level with low-power consumption. The electronic properties are investigated with density functional theory (DFT) calculations. Furthermore, the device concept is versatile, compatible with the current parallelism demands of integration, and transcends the challenge in contacting SURMOF films for scalable-functional devices. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-10T17:26:44Z 2020-12-10T17:26:44Z 2020-02-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1021/acs.nanolett.9b04355 Nano Letters. Washington: Amer Chemical Soc, v. 20, n. 2, p. 1080-1088, 2020. 1530-6984 http://hdl.handle.net/11449/195204 10.1021/acs.nanolett.9b04355 WOS:000514255400034 |
url |
http://dx.doi.org/10.1021/acs.nanolett.9b04355 http://hdl.handle.net/11449/195204 |
identifier_str_mv |
Nano Letters. Washington: Amer Chemical Soc, v. 20, n. 2, p. 1080-1088, 2020. 1530-6984 10.1021/acs.nanolett.9b04355 WOS:000514255400034 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Nano Letters |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1080-1088 |
dc.publisher.none.fl_str_mv |
Amer Chemical Soc |
publisher.none.fl_str_mv |
Amer Chemical Soc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129343085346816 |