Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction

Detalhes bibliográficos
Autor(a) principal: Albano, Luiz G. S.
Data de Publicação: 2020
Outros Autores: Vello, Tatiana P., Camargo, Davi H. S. de [UNESP], Silva, Ricardo M. L. da [UNESP], Padilha, Antonio C. M., Fazzio, Adalberto, Bufon, Carlos C. B. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1021/acs.nanolett.9b04355
http://hdl.handle.net/11449/195204
Resumo: Memristors (MRs) are considered promising devices with the enormous potential to replace complementary metal-oxide-semiconductor (CMOS) technology, which approaches the scale limit. Efforts to fabricate MRs-based hybrid materials may result in suitable operating parameters coupled to high mechanical flexibility and low cost. Metal-organic frameworks (MOFs) arise as a favorable candidate to cover such demands. The step-by-step growth of MOFs structures on functionalized surfaces, called surface-supported metal-organic frameworks (SURMOFs), opens the possibility for designing new applications in strategic fields such as electronics, optoelectronics, and energy harvesting. However, considering the MRs architecture, the typical high porosity of these hybrid materials may lead to short-circuited devices easily. In this sense, here, it is reported for the first time the integration of SURMOF films in rolled-up scalable-functional devices. A freestanding metallic nanomembrane provides a robust and self-adjusted top mechanical contact on the SURMOF layer. The electrical characterization reveals an ambipolar resistive switching mediated by the humidity level with low-power consumption. The electronic properties are investigated with density functional theory (DFT) calculations. Furthermore, the device concept is versatile, compatible with the current parallelism demands of integration, and transcends the challenge in contacting SURMOF films for scalable-functional devices.
id UNSP_0f387286c523cb654b03d2fce8818402
oai_identifier_str oai:repositorio.unesp.br:11449/195204
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical HeterojunctionMetal-organic frameworks (MOFs)HKUST-1resistive switchingscalable-functional devicesstrained nanomembranesMemristors (MRs) are considered promising devices with the enormous potential to replace complementary metal-oxide-semiconductor (CMOS) technology, which approaches the scale limit. Efforts to fabricate MRs-based hybrid materials may result in suitable operating parameters coupled to high mechanical flexibility and low cost. Metal-organic frameworks (MOFs) arise as a favorable candidate to cover such demands. The step-by-step growth of MOFs structures on functionalized surfaces, called surface-supported metal-organic frameworks (SURMOFs), opens the possibility for designing new applications in strategic fields such as electronics, optoelectronics, and energy harvesting. However, considering the MRs architecture, the typical high porosity of these hybrid materials may lead to short-circuited devices easily. In this sense, here, it is reported for the first time the integration of SURMOF films in rolled-up scalable-functional devices. A freestanding metallic nanomembrane provides a robust and self-adjusted top mechanical contact on the SURMOF layer. The electrical characterization reveals an ambipolar resistive switching mediated by the humidity level with low-power consumption. The electronic properties are investigated with density functional theory (DFT) calculations. Furthermore, the device concept is versatile, compatible with the current parallelism demands of integration, and transcends the challenge in contacting SURMOF films for scalable-functional devices.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Brazilian Ctr Res Energy & Mat CNPEM, Campinas, BrazilUniv Campinas UNICAMP, Campinas, BrazilSao Paulo State Univ UNESP, Bauru, SP, BrazilSao Paulo State Univ UNESP, Bauru, SP, BrazilCNPq: 465452/2014-0CNPq: 305305/2016-6CNPq: 408770/2018/0FAPESP: 2014/25979-2FAPESP: 2016/25346-5FAPESP: 2017/02317-2FAPESP: 2017/25553-3FAPESP: 2018/05565-0FAPESP: 2014/50906-9Amer Chemical SocBrazilian Ctr Res Energy & Mat CNPEMUniversidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Albano, Luiz G. S.Vello, Tatiana P.Camargo, Davi H. S. de [UNESP]Silva, Ricardo M. L. da [UNESP]Padilha, Antonio C. M.Fazzio, AdalbertoBufon, Carlos C. B. [UNESP]2020-12-10T17:26:44Z2020-12-10T17:26:44Z2020-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1080-1088http://dx.doi.org/10.1021/acs.nanolett.9b04355Nano Letters. Washington: Amer Chemical Soc, v. 20, n. 2, p. 1080-1088, 2020.1530-6984http://hdl.handle.net/11449/19520410.1021/acs.nanolett.9b04355WOS:000514255400034Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengNano Lettersinfo:eu-repo/semantics/openAccess2021-10-23T05:55:41Zoai:repositorio.unesp.br:11449/195204Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:38:12.342361Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction
title Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction
spellingShingle Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction
Albano, Luiz G. S.
Metal-organic frameworks (MOFs)
HKUST-1
resistive switching
scalable-functional devices
strained nanomembranes
title_short Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction
title_full Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction
title_fullStr Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction
title_full_unstemmed Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction
title_sort Ambipolar Resistive Switching in an Ultrathin Surface-Supported Metal-Organic Framework Vertical Heterojunction
author Albano, Luiz G. S.
author_facet Albano, Luiz G. S.
Vello, Tatiana P.
Camargo, Davi H. S. de [UNESP]
Silva, Ricardo M. L. da [UNESP]
Padilha, Antonio C. M.
Fazzio, Adalberto
Bufon, Carlos C. B. [UNESP]
author_role author
author2 Vello, Tatiana P.
Camargo, Davi H. S. de [UNESP]
Silva, Ricardo M. L. da [UNESP]
Padilha, Antonio C. M.
Fazzio, Adalberto
Bufon, Carlos C. B. [UNESP]
author2_role author
author
author
author
author
author
dc.contributor.none.fl_str_mv Brazilian Ctr Res Energy & Mat CNPEM
Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Albano, Luiz G. S.
Vello, Tatiana P.
Camargo, Davi H. S. de [UNESP]
Silva, Ricardo M. L. da [UNESP]
Padilha, Antonio C. M.
Fazzio, Adalberto
Bufon, Carlos C. B. [UNESP]
dc.subject.por.fl_str_mv Metal-organic frameworks (MOFs)
HKUST-1
resistive switching
scalable-functional devices
strained nanomembranes
topic Metal-organic frameworks (MOFs)
HKUST-1
resistive switching
scalable-functional devices
strained nanomembranes
description Memristors (MRs) are considered promising devices with the enormous potential to replace complementary metal-oxide-semiconductor (CMOS) technology, which approaches the scale limit. Efforts to fabricate MRs-based hybrid materials may result in suitable operating parameters coupled to high mechanical flexibility and low cost. Metal-organic frameworks (MOFs) arise as a favorable candidate to cover such demands. The step-by-step growth of MOFs structures on functionalized surfaces, called surface-supported metal-organic frameworks (SURMOFs), opens the possibility for designing new applications in strategic fields such as electronics, optoelectronics, and energy harvesting. However, considering the MRs architecture, the typical high porosity of these hybrid materials may lead to short-circuited devices easily. In this sense, here, it is reported for the first time the integration of SURMOF films in rolled-up scalable-functional devices. A freestanding metallic nanomembrane provides a robust and self-adjusted top mechanical contact on the SURMOF layer. The electrical characterization reveals an ambipolar resistive switching mediated by the humidity level with low-power consumption. The electronic properties are investigated with density functional theory (DFT) calculations. Furthermore, the device concept is versatile, compatible with the current parallelism demands of integration, and transcends the challenge in contacting SURMOF films for scalable-functional devices.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-10T17:26:44Z
2020-12-10T17:26:44Z
2020-02-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1021/acs.nanolett.9b04355
Nano Letters. Washington: Amer Chemical Soc, v. 20, n. 2, p. 1080-1088, 2020.
1530-6984
http://hdl.handle.net/11449/195204
10.1021/acs.nanolett.9b04355
WOS:000514255400034
url http://dx.doi.org/10.1021/acs.nanolett.9b04355
http://hdl.handle.net/11449/195204
identifier_str_mv Nano Letters. Washington: Amer Chemical Soc, v. 20, n. 2, p. 1080-1088, 2020.
1530-6984
10.1021/acs.nanolett.9b04355
WOS:000514255400034
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Nano Letters
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1080-1088
dc.publisher.none.fl_str_mv Amer Chemical Soc
publisher.none.fl_str_mv Amer Chemical Soc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129343085346816