Oriented texture classification based on self-organizing neural network and Hough transform

Detalhes bibliográficos
Autor(a) principal: Marana, Aparecido Nilceu [UNESP]
Data de Publicação: 1997
Outros Autores: da, L. [UNESP], Velastin, S. A. [UNESP], Lotufo, R. A. [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/ICASSP.1997.595364
http://hdl.handle.net/11449/64992
Resumo: This paper presents a technique for oriented texture classification which is based on the Hough transform and Kohonen's neural network model. In this technique, oriented texture features are extracted from the Hough space by means of two distinct strategies. While the first operates on a non-uniformly sampled Hough space, the second concentrates on the peaks produced in the Hough space. The described technique gives good results for the classification of oriented textures, a common phenomenon in nature underlying an important class of images. Experimental results are presented to demonstrate the performance of the new technique in comparison, with an implemented technique based on Gabor filters.
id UNSP_143cfe37a417fd51a050f752af177ea8
oai_identifier_str oai:repositorio.unesp.br:11449/64992
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Oriented texture classification based on self-organizing neural network and Hough transformMathematical transformationsNeural networksHough transformKohonen's self organizing mapOriented texture classificationFeature extractionThis paper presents a technique for oriented texture classification which is based on the Hough transform and Kohonen's neural network model. In this technique, oriented texture features are extracted from the Hough space by means of two distinct strategies. While the first operates on a non-uniformly sampled Hough space, the second concentrates on the peaks produced in the Hough space. The described technique gives good results for the classification of oriented textures, a common phenomenon in nature underlying an important class of images. Experimental results are presented to demonstrate the performance of the new technique in comparison, with an implemented technique based on Gabor filters.Unesp, Sao PauloUnesp, Sao PauloUniversidade Estadual Paulista (Unesp)Marana, Aparecido Nilceu [UNESP]da, L. [UNESP]Velastin, S. A. [UNESP]Lotufo, R. A. [UNESP]2014-05-27T11:18:10Z2014-05-27T11:18:10Z1997-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject2773-2775http://dx.doi.org/10.1109/ICASSP.1997.595364ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, v. 4, p. 2773-2775.0736-7791http://hdl.handle.net/11449/6499210.1109/ICASSP.1997.5953642-s2.0-00307014246027713750942689Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings0,402info:eu-repo/semantics/openAccess2024-04-23T16:11:27Zoai:repositorio.unesp.br:11449/64992Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:49:11.188211Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Oriented texture classification based on self-organizing neural network and Hough transform
title Oriented texture classification based on self-organizing neural network and Hough transform
spellingShingle Oriented texture classification based on self-organizing neural network and Hough transform
Marana, Aparecido Nilceu [UNESP]
Mathematical transformations
Neural networks
Hough transform
Kohonen's self organizing map
Oriented texture classification
Feature extraction
title_short Oriented texture classification based on self-organizing neural network and Hough transform
title_full Oriented texture classification based on self-organizing neural network and Hough transform
title_fullStr Oriented texture classification based on self-organizing neural network and Hough transform
title_full_unstemmed Oriented texture classification based on self-organizing neural network and Hough transform
title_sort Oriented texture classification based on self-organizing neural network and Hough transform
author Marana, Aparecido Nilceu [UNESP]
author_facet Marana, Aparecido Nilceu [UNESP]
da, L. [UNESP]
Velastin, S. A. [UNESP]
Lotufo, R. A. [UNESP]
author_role author
author2 da, L. [UNESP]
Velastin, S. A. [UNESP]
Lotufo, R. A. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Marana, Aparecido Nilceu [UNESP]
da, L. [UNESP]
Velastin, S. A. [UNESP]
Lotufo, R. A. [UNESP]
dc.subject.por.fl_str_mv Mathematical transformations
Neural networks
Hough transform
Kohonen's self organizing map
Oriented texture classification
Feature extraction
topic Mathematical transformations
Neural networks
Hough transform
Kohonen's self organizing map
Oriented texture classification
Feature extraction
description This paper presents a technique for oriented texture classification which is based on the Hough transform and Kohonen's neural network model. In this technique, oriented texture features are extracted from the Hough space by means of two distinct strategies. While the first operates on a non-uniformly sampled Hough space, the second concentrates on the peaks produced in the Hough space. The described technique gives good results for the classification of oriented textures, a common phenomenon in nature underlying an important class of images. Experimental results are presented to demonstrate the performance of the new technique in comparison, with an implemented technique based on Gabor filters.
publishDate 1997
dc.date.none.fl_str_mv 1997-01-01
2014-05-27T11:18:10Z
2014-05-27T11:18:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/ICASSP.1997.595364
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, v. 4, p. 2773-2775.
0736-7791
http://hdl.handle.net/11449/64992
10.1109/ICASSP.1997.595364
2-s2.0-0030701424
6027713750942689
url http://dx.doi.org/10.1109/ICASSP.1997.595364
http://hdl.handle.net/11449/64992
identifier_str_mv ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, v. 4, p. 2773-2775.
0736-7791
10.1109/ICASSP.1997.595364
2-s2.0-0030701424
6027713750942689
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
0,402
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 2773-2775
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129252823924736