Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep

Detalhes bibliográficos
Autor(a) principal: Freitas, L. A. [UNESP]
Data de Publicação: 2019
Outros Autores: Savegnago, R. P., Oliveira, E. J., Paz, C. C. P., Munari, D. P. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.smallrumres.2019.03.011
http://hdl.handle.net/11449/184491
Resumo: The objectives of this study were to estimate the genetic parameters for body weight (BW), packed cell volume (PCV) and fecal egg count (FEC) in Santa Ines sheep using random regression models in order to indicate which traits could be used as selection criteria and to explore the additive genetic pattern of the animals using cluster analysis in order to select animals that attend the breeding goals. The dataset had 4608 records. The covariance components for traits were estimated using the restricted maximum likelihood (REML) method, by means of single trait random regression models. The cluster analyzes was performed in the software R. The random regression models using Legendre polynomial with 3 parameters (intercept, linear and quadratic) to model the genetic additive effect and permanent environment presented the best fit for the three traits. Heritability estimates for BW ranged from 0.02 (0.02) to 0.40 (0.03). The selection of these animals for PCV and FEC would result in low efficiency due to the low estimates of heritability (0.01 +/- 0.01-0.18 +/- 0.02). Through of the non-hierarchical cluster analysis, only one group presented a genetic profile indicated for selection. It is recommended the selection of animals based on BW (h(2) = 0.12 +/- 0.05) and PCV (h(2) = 0.18 +/- 0.03) from 180 days of age, because although the low heritability estimate, the obtained gains will be permanent.
id UNSP_17e0d0adaa71b491c5c5e18081776627
oai_identifier_str oai:repositorio.unesp.br:11449/184491
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheepBreeding valueHair sheepMultivariate analysesOvis ariesThe objectives of this study were to estimate the genetic parameters for body weight (BW), packed cell volume (PCV) and fecal egg count (FEC) in Santa Ines sheep using random regression models in order to indicate which traits could be used as selection criteria and to explore the additive genetic pattern of the animals using cluster analysis in order to select animals that attend the breeding goals. The dataset had 4608 records. The covariance components for traits were estimated using the restricted maximum likelihood (REML) method, by means of single trait random regression models. The cluster analyzes was performed in the software R. The random regression models using Legendre polynomial with 3 parameters (intercept, linear and quadratic) to model the genetic additive effect and permanent environment presented the best fit for the three traits. Heritability estimates for BW ranged from 0.02 (0.02) to 0.40 (0.03). The selection of these animals for PCV and FEC would result in low efficiency due to the low estimates of heritability (0.01 +/- 0.01-0.18 +/- 0.02). Through of the non-hierarchical cluster analysis, only one group presented a genetic profile indicated for selection. It is recommended the selection of animals based on BW (h(2) = 0.12 +/- 0.05) and PCV (h(2) = 0.18 +/- 0.03) from 180 days of age, because although the low heritability estimate, the obtained gains will be permanent.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Paulista, Fac Ciencias Agr & Vet, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, BrazilInst Zootecnia, Ctr APTA Bovinos Corte, Rodovia Carlos Tonani,Km 94, BR-14174000 Sertaozinho, SP, BrazilUniv Sao Paulo, Fac Med Ribeirao Preto, Dept Genet, BR-14049900 Ribeirao Preto, SP, BrazilUniv Estadual Paulista, Fac Ciencias Agr & Vet, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, BrazilFAPESP: 2012/15982-0CAPES: 001FAPESP: 2016/10583-1Elsevier B.V.Universidade Estadual Paulista (Unesp)Inst ZootecniaUniversidade de São Paulo (USP)Freitas, L. A. [UNESP]Savegnago, R. P.Oliveira, E. J.Paz, C. C. P.Munari, D. P. [UNESP]2019-10-04T12:14:06Z2019-10-04T12:14:06Z2019-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article57-61http://dx.doi.org/10.1016/j.smallrumres.2019.03.011Small Ruminant Research. Amsterdam: Elsevier Science Bv, v. 174, p. 57-61, 2019.0921-4488http://hdl.handle.net/11449/18449110.1016/j.smallrumres.2019.03.011WOS:000467890900010Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSmall Ruminant Researchinfo:eu-repo/semantics/openAccess2021-10-22T22:17:24Zoai:repositorio.unesp.br:11449/184491Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:49:58.726607Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep
title Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep
spellingShingle Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep
Freitas, L. A. [UNESP]
Breeding value
Hair sheep
Multivariate analyses
Ovis aries
title_short Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep
title_full Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep
title_fullStr Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep
title_full_unstemmed Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep
title_sort Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep
author Freitas, L. A. [UNESP]
author_facet Freitas, L. A. [UNESP]
Savegnago, R. P.
Oliveira, E. J.
Paz, C. C. P.
Munari, D. P. [UNESP]
author_role author
author2 Savegnago, R. P.
Oliveira, E. J.
Paz, C. C. P.
Munari, D. P. [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Inst Zootecnia
Universidade de São Paulo (USP)
dc.contributor.author.fl_str_mv Freitas, L. A. [UNESP]
Savegnago, R. P.
Oliveira, E. J.
Paz, C. C. P.
Munari, D. P. [UNESP]
dc.subject.por.fl_str_mv Breeding value
Hair sheep
Multivariate analyses
Ovis aries
topic Breeding value
Hair sheep
Multivariate analyses
Ovis aries
description The objectives of this study were to estimate the genetic parameters for body weight (BW), packed cell volume (PCV) and fecal egg count (FEC) in Santa Ines sheep using random regression models in order to indicate which traits could be used as selection criteria and to explore the additive genetic pattern of the animals using cluster analysis in order to select animals that attend the breeding goals. The dataset had 4608 records. The covariance components for traits were estimated using the restricted maximum likelihood (REML) method, by means of single trait random regression models. The cluster analyzes was performed in the software R. The random regression models using Legendre polynomial with 3 parameters (intercept, linear and quadratic) to model the genetic additive effect and permanent environment presented the best fit for the three traits. Heritability estimates for BW ranged from 0.02 (0.02) to 0.40 (0.03). The selection of these animals for PCV and FEC would result in low efficiency due to the low estimates of heritability (0.01 +/- 0.01-0.18 +/- 0.02). Through of the non-hierarchical cluster analysis, only one group presented a genetic profile indicated for selection. It is recommended the selection of animals based on BW (h(2) = 0.12 +/- 0.05) and PCV (h(2) = 0.18 +/- 0.03) from 180 days of age, because although the low heritability estimate, the obtained gains will be permanent.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-04T12:14:06Z
2019-10-04T12:14:06Z
2019-05-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.smallrumres.2019.03.011
Small Ruminant Research. Amsterdam: Elsevier Science Bv, v. 174, p. 57-61, 2019.
0921-4488
http://hdl.handle.net/11449/184491
10.1016/j.smallrumres.2019.03.011
WOS:000467890900010
url http://dx.doi.org/10.1016/j.smallrumres.2019.03.011
http://hdl.handle.net/11449/184491
identifier_str_mv Small Ruminant Research. Amsterdam: Elsevier Science Bv, v. 174, p. 57-61, 2019.
0921-4488
10.1016/j.smallrumres.2019.03.011
WOS:000467890900010
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Small Ruminant Research
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 57-61
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129466992427008