Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.smallrumres.2019.03.011 http://hdl.handle.net/11449/184491 |
Resumo: | The objectives of this study were to estimate the genetic parameters for body weight (BW), packed cell volume (PCV) and fecal egg count (FEC) in Santa Ines sheep using random regression models in order to indicate which traits could be used as selection criteria and to explore the additive genetic pattern of the animals using cluster analysis in order to select animals that attend the breeding goals. The dataset had 4608 records. The covariance components for traits were estimated using the restricted maximum likelihood (REML) method, by means of single trait random regression models. The cluster analyzes was performed in the software R. The random regression models using Legendre polynomial with 3 parameters (intercept, linear and quadratic) to model the genetic additive effect and permanent environment presented the best fit for the three traits. Heritability estimates for BW ranged from 0.02 (0.02) to 0.40 (0.03). The selection of these animals for PCV and FEC would result in low efficiency due to the low estimates of heritability (0.01 +/- 0.01-0.18 +/- 0.02). Through of the non-hierarchical cluster analysis, only one group presented a genetic profile indicated for selection. It is recommended the selection of animals based on BW (h(2) = 0.12 +/- 0.05) and PCV (h(2) = 0.18 +/- 0.03) from 180 days of age, because although the low heritability estimate, the obtained gains will be permanent. |
id |
UNSP_17e0d0adaa71b491c5c5e18081776627 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/184491 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheepBreeding valueHair sheepMultivariate analysesOvis ariesThe objectives of this study were to estimate the genetic parameters for body weight (BW), packed cell volume (PCV) and fecal egg count (FEC) in Santa Ines sheep using random regression models in order to indicate which traits could be used as selection criteria and to explore the additive genetic pattern of the animals using cluster analysis in order to select animals that attend the breeding goals. The dataset had 4608 records. The covariance components for traits were estimated using the restricted maximum likelihood (REML) method, by means of single trait random regression models. The cluster analyzes was performed in the software R. The random regression models using Legendre polynomial with 3 parameters (intercept, linear and quadratic) to model the genetic additive effect and permanent environment presented the best fit for the three traits. Heritability estimates for BW ranged from 0.02 (0.02) to 0.40 (0.03). The selection of these animals for PCV and FEC would result in low efficiency due to the low estimates of heritability (0.01 +/- 0.01-0.18 +/- 0.02). Through of the non-hierarchical cluster analysis, only one group presented a genetic profile indicated for selection. It is recommended the selection of animals based on BW (h(2) = 0.12 +/- 0.05) and PCV (h(2) = 0.18 +/- 0.03) from 180 days of age, because although the low heritability estimate, the obtained gains will be permanent.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estadual Paulista, Fac Ciencias Agr & Vet, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, BrazilInst Zootecnia, Ctr APTA Bovinos Corte, Rodovia Carlos Tonani,Km 94, BR-14174000 Sertaozinho, SP, BrazilUniv Sao Paulo, Fac Med Ribeirao Preto, Dept Genet, BR-14049900 Ribeirao Preto, SP, BrazilUniv Estadual Paulista, Fac Ciencias Agr & Vet, Via Acesso Prof Paulo Donato Castellane S-N, BR-14884900 Jaboticabal, SP, BrazilFAPESP: 2012/15982-0CAPES: 001FAPESP: 2016/10583-1Elsevier B.V.Universidade Estadual Paulista (Unesp)Inst ZootecniaUniversidade de São Paulo (USP)Freitas, L. A. [UNESP]Savegnago, R. P.Oliveira, E. J.Paz, C. C. P.Munari, D. P. [UNESP]2019-10-04T12:14:06Z2019-10-04T12:14:06Z2019-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article57-61http://dx.doi.org/10.1016/j.smallrumres.2019.03.011Small Ruminant Research. Amsterdam: Elsevier Science Bv, v. 174, p. 57-61, 2019.0921-4488http://hdl.handle.net/11449/18449110.1016/j.smallrumres.2019.03.011WOS:000467890900010Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengSmall Ruminant Researchinfo:eu-repo/semantics/openAccess2021-10-22T22:17:24Zoai:repositorio.unesp.br:11449/184491Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:49:58.726607Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep |
title |
Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep |
spellingShingle |
Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep Freitas, L. A. [UNESP] Breeding value Hair sheep Multivariate analyses Ovis aries |
title_short |
Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep |
title_full |
Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep |
title_fullStr |
Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep |
title_full_unstemmed |
Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep |
title_sort |
Inheritance, genetic correlation and cluster analyses of fecal egg count, packed cell volume and body weight in different ages using random regression model in Santa Ines sheep |
author |
Freitas, L. A. [UNESP] |
author_facet |
Freitas, L. A. [UNESP] Savegnago, R. P. Oliveira, E. J. Paz, C. C. P. Munari, D. P. [UNESP] |
author_role |
author |
author2 |
Savegnago, R. P. Oliveira, E. J. Paz, C. C. P. Munari, D. P. [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) Inst Zootecnia Universidade de São Paulo (USP) |
dc.contributor.author.fl_str_mv |
Freitas, L. A. [UNESP] Savegnago, R. P. Oliveira, E. J. Paz, C. C. P. Munari, D. P. [UNESP] |
dc.subject.por.fl_str_mv |
Breeding value Hair sheep Multivariate analyses Ovis aries |
topic |
Breeding value Hair sheep Multivariate analyses Ovis aries |
description |
The objectives of this study were to estimate the genetic parameters for body weight (BW), packed cell volume (PCV) and fecal egg count (FEC) in Santa Ines sheep using random regression models in order to indicate which traits could be used as selection criteria and to explore the additive genetic pattern of the animals using cluster analysis in order to select animals that attend the breeding goals. The dataset had 4608 records. The covariance components for traits were estimated using the restricted maximum likelihood (REML) method, by means of single trait random regression models. The cluster analyzes was performed in the software R. The random regression models using Legendre polynomial with 3 parameters (intercept, linear and quadratic) to model the genetic additive effect and permanent environment presented the best fit for the three traits. Heritability estimates for BW ranged from 0.02 (0.02) to 0.40 (0.03). The selection of these animals for PCV and FEC would result in low efficiency due to the low estimates of heritability (0.01 +/- 0.01-0.18 +/- 0.02). Through of the non-hierarchical cluster analysis, only one group presented a genetic profile indicated for selection. It is recommended the selection of animals based on BW (h(2) = 0.12 +/- 0.05) and PCV (h(2) = 0.18 +/- 0.03) from 180 days of age, because although the low heritability estimate, the obtained gains will be permanent. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-10-04T12:14:06Z 2019-10-04T12:14:06Z 2019-05-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.smallrumres.2019.03.011 Small Ruminant Research. Amsterdam: Elsevier Science Bv, v. 174, p. 57-61, 2019. 0921-4488 http://hdl.handle.net/11449/184491 10.1016/j.smallrumres.2019.03.011 WOS:000467890900010 |
url |
http://dx.doi.org/10.1016/j.smallrumres.2019.03.011 http://hdl.handle.net/11449/184491 |
identifier_str_mv |
Small Ruminant Research. Amsterdam: Elsevier Science Bv, v. 174, p. 57-61, 2019. 0921-4488 10.1016/j.smallrumres.2019.03.011 WOS:000467890900010 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Small Ruminant Research |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
57-61 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129466992427008 |