Future trends in optimum-path forest classification

Detalhes bibliográficos
Autor(a) principal: Papa, João Paulo [UNESP]
Data de Publicação: 2022
Outros Autores: Falcão, Alexandre Xavier
Tipo de documento: Capítulo de livro
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/B978-0-12-822688-9.00017-7
http://hdl.handle.net/11449/242086
Resumo: In the past years, we have observed an increasing number of applications that require machine learning techniques to sort out problems that are not straightforward to humans. The reasons vary from information that is not clearly visible to the human eye (e.g., microscopic patterns in medical images) or the massive amount of data to analyze. This book aimed to shed light on the Optimum-Path Forest framework, which comprises approaches to dealing with supervised, semi-supervised, and unsupervised learning. Different applications have been presented together with a theoretical background concerning the techniques presented here. We expect to call the attention and curiosity of the readers towards OPF-based techniques and their strengths. © 2022 Copyright
id UNSP_23432e25fa89e202560d2b2ddc141635
oai_identifier_str oai:repositorio.unesp.br:11449/242086
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Future trends in optimum-path forest classificationClusteringDeep learningMachine learningOptimum-path forestSupervised learningIn the past years, we have observed an increasing number of applications that require machine learning techniques to sort out problems that are not straightforward to humans. The reasons vary from information that is not clearly visible to the human eye (e.g., microscopic patterns in medical images) or the massive amount of data to analyze. This book aimed to shed light on the Optimum-Path Forest framework, which comprises approaches to dealing with supervised, semi-supervised, and unsupervised learning. Different applications have been presented together with a theoretical background concerning the techniques presented here. We expect to call the attention and curiosity of the readers towards OPF-based techniques and their strengths. © 2022 CopyrightUNESP - São Paulo State University School of SciencesDepartment of Computing São Paulo State UniversityInstitute of Computing University of Campinas (UNICAMP) CampinasUNESP - São Paulo State University School of SciencesDepartment of Computing São Paulo State UniversityUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Papa, João Paulo [UNESP]Falcão, Alexandre Xavier2023-03-02T08:37:56Z2023-03-02T08:37:56Z2022-01-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart217-219http://dx.doi.org/10.1016/B978-0-12-822688-9.00017-7Optimum-Path Forest: Theory, Algorithms, and Applications, p. 217-219.http://hdl.handle.net/11449/24208610.1016/B978-0-12-822688-9.00017-72-s2.0-85134954561Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengOptimum-Path Forest: Theory, Algorithms, and Applicationsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:01Zoai:repositorio.unesp.br:11449/242086Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:50:15.103679Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Future trends in optimum-path forest classification
title Future trends in optimum-path forest classification
spellingShingle Future trends in optimum-path forest classification
Papa, João Paulo [UNESP]
Clustering
Deep learning
Machine learning
Optimum-path forest
Supervised learning
title_short Future trends in optimum-path forest classification
title_full Future trends in optimum-path forest classification
title_fullStr Future trends in optimum-path forest classification
title_full_unstemmed Future trends in optimum-path forest classification
title_sort Future trends in optimum-path forest classification
author Papa, João Paulo [UNESP]
author_facet Papa, João Paulo [UNESP]
Falcão, Alexandre Xavier
author_role author
author2 Falcão, Alexandre Xavier
author2_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Papa, João Paulo [UNESP]
Falcão, Alexandre Xavier
dc.subject.por.fl_str_mv Clustering
Deep learning
Machine learning
Optimum-path forest
Supervised learning
topic Clustering
Deep learning
Machine learning
Optimum-path forest
Supervised learning
description In the past years, we have observed an increasing number of applications that require machine learning techniques to sort out problems that are not straightforward to humans. The reasons vary from information that is not clearly visible to the human eye (e.g., microscopic patterns in medical images) or the massive amount of data to analyze. This book aimed to shed light on the Optimum-Path Forest framework, which comprises approaches to dealing with supervised, semi-supervised, and unsupervised learning. Different applications have been presented together with a theoretical background concerning the techniques presented here. We expect to call the attention and curiosity of the readers towards OPF-based techniques and their strengths. © 2022 Copyright
publishDate 2022
dc.date.none.fl_str_mv 2022-01-24
2023-03-02T08:37:56Z
2023-03-02T08:37:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bookPart
format bookPart
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/B978-0-12-822688-9.00017-7
Optimum-Path Forest: Theory, Algorithms, and Applications, p. 217-219.
http://hdl.handle.net/11449/242086
10.1016/B978-0-12-822688-9.00017-7
2-s2.0-85134954561
url http://dx.doi.org/10.1016/B978-0-12-822688-9.00017-7
http://hdl.handle.net/11449/242086
identifier_str_mv Optimum-Path Forest: Theory, Algorithms, and Applications, p. 217-219.
10.1016/B978-0-12-822688-9.00017-7
2-s2.0-85134954561
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Optimum-Path Forest: Theory, Algorithms, and Applications
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 217-219
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128424148992000