Future trends in optimum-path forest classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Capítulo de livro |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/B978-0-12-822688-9.00017-7 http://hdl.handle.net/11449/242086 |
Resumo: | In the past years, we have observed an increasing number of applications that require machine learning techniques to sort out problems that are not straightforward to humans. The reasons vary from information that is not clearly visible to the human eye (e.g., microscopic patterns in medical images) or the massive amount of data to analyze. This book aimed to shed light on the Optimum-Path Forest framework, which comprises approaches to dealing with supervised, semi-supervised, and unsupervised learning. Different applications have been presented together with a theoretical background concerning the techniques presented here. We expect to call the attention and curiosity of the readers towards OPF-based techniques and their strengths. © 2022 Copyright |
id |
UNSP_23432e25fa89e202560d2b2ddc141635 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/242086 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Future trends in optimum-path forest classificationClusteringDeep learningMachine learningOptimum-path forestSupervised learningIn the past years, we have observed an increasing number of applications that require machine learning techniques to sort out problems that are not straightforward to humans. The reasons vary from information that is not clearly visible to the human eye (e.g., microscopic patterns in medical images) or the massive amount of data to analyze. This book aimed to shed light on the Optimum-Path Forest framework, which comprises approaches to dealing with supervised, semi-supervised, and unsupervised learning. Different applications have been presented together with a theoretical background concerning the techniques presented here. We expect to call the attention and curiosity of the readers towards OPF-based techniques and their strengths. © 2022 CopyrightUNESP - São Paulo State University School of SciencesDepartment of Computing São Paulo State UniversityInstitute of Computing University of Campinas (UNICAMP) CampinasUNESP - São Paulo State University School of SciencesDepartment of Computing São Paulo State UniversityUniversidade Estadual Paulista (UNESP)Universidade Estadual de Campinas (UNICAMP)Papa, João Paulo [UNESP]Falcão, Alexandre Xavier2023-03-02T08:37:56Z2023-03-02T08:37:56Z2022-01-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPart217-219http://dx.doi.org/10.1016/B978-0-12-822688-9.00017-7Optimum-Path Forest: Theory, Algorithms, and Applications, p. 217-219.http://hdl.handle.net/11449/24208610.1016/B978-0-12-822688-9.00017-72-s2.0-85134954561Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengOptimum-Path Forest: Theory, Algorithms, and Applicationsinfo:eu-repo/semantics/openAccess2024-04-23T16:11:01Zoai:repositorio.unesp.br:11449/242086Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:50:15.103679Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Future trends in optimum-path forest classification |
title |
Future trends in optimum-path forest classification |
spellingShingle |
Future trends in optimum-path forest classification Papa, João Paulo [UNESP] Clustering Deep learning Machine learning Optimum-path forest Supervised learning |
title_short |
Future trends in optimum-path forest classification |
title_full |
Future trends in optimum-path forest classification |
title_fullStr |
Future trends in optimum-path forest classification |
title_full_unstemmed |
Future trends in optimum-path forest classification |
title_sort |
Future trends in optimum-path forest classification |
author |
Papa, João Paulo [UNESP] |
author_facet |
Papa, João Paulo [UNESP] Falcão, Alexandre Xavier |
author_role |
author |
author2 |
Falcão, Alexandre Xavier |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Papa, João Paulo [UNESP] Falcão, Alexandre Xavier |
dc.subject.por.fl_str_mv |
Clustering Deep learning Machine learning Optimum-path forest Supervised learning |
topic |
Clustering Deep learning Machine learning Optimum-path forest Supervised learning |
description |
In the past years, we have observed an increasing number of applications that require machine learning techniques to sort out problems that are not straightforward to humans. The reasons vary from information that is not clearly visible to the human eye (e.g., microscopic patterns in medical images) or the massive amount of data to analyze. This book aimed to shed light on the Optimum-Path Forest framework, which comprises approaches to dealing with supervised, semi-supervised, and unsupervised learning. Different applications have been presented together with a theoretical background concerning the techniques presented here. We expect to call the attention and curiosity of the readers towards OPF-based techniques and their strengths. © 2022 Copyright |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-24 2023-03-02T08:37:56Z 2023-03-02T08:37:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bookPart |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/B978-0-12-822688-9.00017-7 Optimum-Path Forest: Theory, Algorithms, and Applications, p. 217-219. http://hdl.handle.net/11449/242086 10.1016/B978-0-12-822688-9.00017-7 2-s2.0-85134954561 |
url |
http://dx.doi.org/10.1016/B978-0-12-822688-9.00017-7 http://hdl.handle.net/11449/242086 |
identifier_str_mv |
Optimum-Path Forest: Theory, Algorithms, and Applications, p. 217-219. 10.1016/B978-0-12-822688-9.00017-7 2-s2.0-85134954561 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Optimum-Path Forest: Theory, Algorithms, and Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
217-219 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128424148992000 |