Blur parameter identification through optimum-path forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-64698-5_20 http://hdl.handle.net/11449/179131 |
Resumo: | Image acquisition processes usually add some level of noise and degradation, thus causing common problems in image restoration. The restoration process depends on the knowledge about the degradation parameters, which is critical for the image deblurring step. In order to deal with this issue, several approaches have been used in the literature, as well as techniques based on machine learning. In this paper, we presented an approach to identify blur parameters in images using the Optimum-Path Forest (OPF) classifier. Experiments demonstrated the efficiency and effectiveness of OPF when compared against some state-of-the-art pattern recognition techniques for blur parameter identification purpose, such as Support Vector Machines, Bayesian classifier and the k-nearest neighbors. |
id |
UNSP_47e65eb9e503747ff064f02fddefc637 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/179131 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Blur parameter identification through optimum-path forestImage restorationMachine learningOptimum-path forestImage acquisition processes usually add some level of noise and degradation, thus causing common problems in image restoration. The restoration process depends on the knowledge about the degradation parameters, which is critical for the image deblurring step. In order to deal with this issue, several approaches have been used in the literature, as well as techniques based on machine learning. In this paper, we presented an approach to identify blur parameters in images using the Optimum-Path Forest (OPF) classifier. Experiments demonstrated the efficiency and effectiveness of OPF when compared against some state-of-the-art pattern recognition techniques for blur parameter identification purpose, such as Support Vector Machines, Bayesian classifier and the k-nearest neighbors.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Department of Computing Federal University of São Carlos (UFSCar), Rodovia Washington Luís, Km 235 - SP 310Department of Computing São Paulo State University (Unesp), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01Department of Computing São Paulo State University (Unesp), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01FAPESP: #2014/12236-1FAPESP: #2014/16250-9CNPq: #306166/2014-3Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Pires, Rafael G.Fernandes, Silas E. N.Papa, João Paulo [UNESP]2018-12-11T17:33:53Z2018-12-11T17:33:53Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject230-240http://dx.doi.org/10.1007/978-3-319-64698-5_20Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10425 LNCS, p. 230-240.1611-33490302-9743http://hdl.handle.net/11449/17913110.1007/978-3-319-64698-5_202-s2.0-85028453202Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2024-04-23T16:11:26Zoai:repositorio.unesp.br:11449/179131Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:00:15.604389Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Blur parameter identification through optimum-path forest |
title |
Blur parameter identification through optimum-path forest |
spellingShingle |
Blur parameter identification through optimum-path forest Pires, Rafael G. Image restoration Machine learning Optimum-path forest |
title_short |
Blur parameter identification through optimum-path forest |
title_full |
Blur parameter identification through optimum-path forest |
title_fullStr |
Blur parameter identification through optimum-path forest |
title_full_unstemmed |
Blur parameter identification through optimum-path forest |
title_sort |
Blur parameter identification through optimum-path forest |
author |
Pires, Rafael G. |
author_facet |
Pires, Rafael G. Fernandes, Silas E. N. Papa, João Paulo [UNESP] |
author_role |
author |
author2 |
Fernandes, Silas E. N. Papa, João Paulo [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Pires, Rafael G. Fernandes, Silas E. N. Papa, João Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Image restoration Machine learning Optimum-path forest |
topic |
Image restoration Machine learning Optimum-path forest |
description |
Image acquisition processes usually add some level of noise and degradation, thus causing common problems in image restoration. The restoration process depends on the knowledge about the degradation parameters, which is critical for the image deblurring step. In order to deal with this issue, several approaches have been used in the literature, as well as techniques based on machine learning. In this paper, we presented an approach to identify blur parameters in images using the Optimum-Path Forest (OPF) classifier. Experiments demonstrated the efficiency and effectiveness of OPF when compared against some state-of-the-art pattern recognition techniques for blur parameter identification purpose, such as Support Vector Machines, Bayesian classifier and the k-nearest neighbors. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2018-12-11T17:33:53Z 2018-12-11T17:33:53Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-64698-5_20 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10425 LNCS, p. 230-240. 1611-3349 0302-9743 http://hdl.handle.net/11449/179131 10.1007/978-3-319-64698-5_20 2-s2.0-85028453202 |
url |
http://dx.doi.org/10.1007/978-3-319-64698-5_20 http://hdl.handle.net/11449/179131 |
identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 10425 LNCS, p. 230-240. 1611-3349 0302-9743 10.1007/978-3-319-64698-5_20 2-s2.0-85028453202 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
230-240 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128231775141888 |