Optimum-Path Forest based on k-connectivity: Theory and applications

Detalhes bibliográficos
Autor(a) principal: Papa, Joao Paulo [UNESP]
Data de Publicação: 2017
Outros Autores: Nachif Fernandes, Silas Evandro, Falcao, Alexandre Xavier
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.patrec.2016.07.026
http://hdl.handle.net/11449/162543
Resumo: Graph-based pattern recognition techniques have been in the spotlight for many years, since there is a constant need for faster and more effective approaches. Among them, the Optimum-Path Forest (OPF) framework has gained considerable attention in the last years, mainly due to the promising results obtained by OPF-based classifiers, which range from unsupervised, semi-supervised and supervised learning. In this paper, we consider a deeper theoretical explanation concerning the supervised OPF classifier with k-neighborhood (OPFk), as well as we proposed two different training and classification algorithms that allow OPFk to work faster. The experimental validation against standard OPF and Support Vector Machines also validates the robustness of OPFk in real and synthetic datasets. (C) 2016 Elsevier B.V. All rights reserved.
id UNSP_cddfcdd3738d65443f69e4cc0a06d49e
oai_identifier_str oai:repositorio.unesp.br:11449/162543
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Optimum-Path Forest based on k-connectivity: Theory and applicationsPattern classificationOptimum-Path ForestSupervised learningGraph-based pattern recognition techniques have been in the spotlight for many years, since there is a constant need for faster and more effective approaches. Among them, the Optimum-Path Forest (OPF) framework has gained considerable attention in the last years, mainly due to the promising results obtained by OPF-based classifiers, which range from unsupervised, semi-supervised and supervised learning. In this paper, we consider a deeper theoretical explanation concerning the supervised OPF classifier with k-neighborhood (OPFk), as well as we proposed two different training and classification algorithms that allow OPFk to work faster. The experimental validation against standard OPF and Support Vector Machines also validates the robustness of OPFk in real and synthetic datasets. (C) 2016 Elsevier B.V. All rights reserved.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Sao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube, BR-17033360 Bauru, SP, BrazilUniv Fed Sao Carlos, Dept Comp, Rod Washington Luis,Km 235, BR-13565905 Sao Carlos, SP, BrazilUniv Estadual Campinas, Inst Comp, Av Albert Einstein 1251, BR-13083852 Campinas, SP, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube, BR-17033360 Bauru, SP, BrazilCAPES: 2966/2014FAPESP: 2009/16206-1FAPESP: 2013/20387-7FAPESP: 2014/2014/16250-9CNPq: 303182/2011-3CNPq: 70571/2013-6CNPq: 306166/2014-3Elsevier B.V.Universidade Estadual Paulista (Unesp)Universidade Federal de São Carlos (UFSCar)Universidade Estadual de Campinas (UNICAMP)Papa, Joao Paulo [UNESP]Nachif Fernandes, Silas EvandroFalcao, Alexandre Xavier2018-11-26T17:20:52Z2018-11-26T17:20:52Z2017-02-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article117-126application/pdfhttp://dx.doi.org/10.1016/j.patrec.2016.07.026Pattern Recognition Letters. Amsterdam: Elsevier Science Bv, v. 87, p. 117-126, 2017.0167-8655http://hdl.handle.net/11449/16254310.1016/j.patrec.2016.07.026WOS:000395616700015WOS000395616700015.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPattern Recognition Letters0,662info:eu-repo/semantics/openAccess2024-04-23T16:10:48Zoai:repositorio.unesp.br:11449/162543Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:10:13.733922Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Optimum-Path Forest based on k-connectivity: Theory and applications
title Optimum-Path Forest based on k-connectivity: Theory and applications
spellingShingle Optimum-Path Forest based on k-connectivity: Theory and applications
Papa, Joao Paulo [UNESP]
Pattern classification
Optimum-Path Forest
Supervised learning
title_short Optimum-Path Forest based on k-connectivity: Theory and applications
title_full Optimum-Path Forest based on k-connectivity: Theory and applications
title_fullStr Optimum-Path Forest based on k-connectivity: Theory and applications
title_full_unstemmed Optimum-Path Forest based on k-connectivity: Theory and applications
title_sort Optimum-Path Forest based on k-connectivity: Theory and applications
author Papa, Joao Paulo [UNESP]
author_facet Papa, Joao Paulo [UNESP]
Nachif Fernandes, Silas Evandro
Falcao, Alexandre Xavier
author_role author
author2 Nachif Fernandes, Silas Evandro
Falcao, Alexandre Xavier
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
Universidade Federal de São Carlos (UFSCar)
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Papa, Joao Paulo [UNESP]
Nachif Fernandes, Silas Evandro
Falcao, Alexandre Xavier
dc.subject.por.fl_str_mv Pattern classification
Optimum-Path Forest
Supervised learning
topic Pattern classification
Optimum-Path Forest
Supervised learning
description Graph-based pattern recognition techniques have been in the spotlight for many years, since there is a constant need for faster and more effective approaches. Among them, the Optimum-Path Forest (OPF) framework has gained considerable attention in the last years, mainly due to the promising results obtained by OPF-based classifiers, which range from unsupervised, semi-supervised and supervised learning. In this paper, we consider a deeper theoretical explanation concerning the supervised OPF classifier with k-neighborhood (OPFk), as well as we proposed two different training and classification algorithms that allow OPFk to work faster. The experimental validation against standard OPF and Support Vector Machines also validates the robustness of OPFk in real and synthetic datasets. (C) 2016 Elsevier B.V. All rights reserved.
publishDate 2017
dc.date.none.fl_str_mv 2017-02-01
2018-11-26T17:20:52Z
2018-11-26T17:20:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.patrec.2016.07.026
Pattern Recognition Letters. Amsterdam: Elsevier Science Bv, v. 87, p. 117-126, 2017.
0167-8655
http://hdl.handle.net/11449/162543
10.1016/j.patrec.2016.07.026
WOS:000395616700015
WOS000395616700015.pdf
url http://dx.doi.org/10.1016/j.patrec.2016.07.026
http://hdl.handle.net/11449/162543
identifier_str_mv Pattern Recognition Letters. Amsterdam: Elsevier Science Bv, v. 87, p. 117-126, 2017.
0167-8655
10.1016/j.patrec.2016.07.026
WOS:000395616700015
WOS000395616700015.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pattern Recognition Letters
0,662
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 117-126
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128904270970880