Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map

Detalhes bibliográficos
Autor(a) principal: de Oliveira, Juliano A. [UNESP]
Data de Publicação: 2019
Outros Autores: de Mendonça, Hans M. J. [UNESP], da Silva, Anderson A. A. [UNESP], Leonel, Edson D. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1007/s13538-019-00706-0
http://hdl.handle.net/11449/199664
Resumo: The convergence to the stationary state is described using scaling arguments at a fold and a period doubling bifurcation in a one-dimensional Gauss map. Two procedures are used: (i) a phenomenological investigation leading to a set of critical exponents defining the universality class of the bifurcation and; (ii) analytical investigation that transforms, near the stationary state, the difference equation into an ordinary differential equation that is easily solved. The novelty of the procedure comes from the fact that it is firstly applied to the Gauss map and critical exponents for the fold bifurcations are defined.
id UNSP_248b3f29bb2e4b16bbcb87b6208019b4
oai_identifier_str oai:repositorio.unesp.br:11449/199664
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss MapBifurcationsCritical exponentsGauss mapScaling lawThe convergence to the stationary state is described using scaling arguments at a fold and a period doubling bifurcation in a one-dimensional Gauss map. Two procedures are used: (i) a phenomenological investigation leading to a set of critical exponents defining the universality class of the bifurcation and; (ii) analytical investigation that transforms, near the stationary state, the difference equation into an ordinary differential equation that is easily solved. The novelty of the procedure comes from the fact that it is firstly applied to the Gauss map and critical exponents for the fold bifurcations are defined.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Estadual Paulista (UNESP) Câmpus de São João da Boa Vista, Av. Profa. Isette Corrêa Fontão, 505Departamento de Física Instituto de Geociências e Ciências Exatas Câmpus de Rio Claro Universidade Estadual Paulista (UNESP), Av.24A, 1515Universidade Estadual Paulista (UNESP) Câmpus de São João da Boa Vista, Av. Profa. Isette Corrêa Fontão, 505Departamento de Física Instituto de Geociências e Ciências Exatas Câmpus de Rio Claro Universidade Estadual Paulista (UNESP), Av.24A, 1515FAPESP: 2005/56253-8FAPESP: 2005/56253-8)(FAPESP: 2008/57528-9FAPESP: 2012/23688- 5FUNDUNESP: 2012/23688- 5FAPERJ: 2014/18672- 8FAPESP: 2015/22062- 3)FUNDUNESP: 2017/14414-2FAPERJ: 2018/14685-9FAPESP: 2018/14685-9CNPq: 303242/2018-3CNPq: 303707/2015-1CNPq: 311105/2015-7)CNPq: 421254/2016-5Universidade Estadual Paulista (Unesp)de Oliveira, Juliano A. [UNESP]de Mendonça, Hans M. J. [UNESP]da Silva, Anderson A. A. [UNESP]Leonel, Edson D. [UNESP]2020-12-12T01:46:03Z2020-12-12T01:46:03Z2019-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article923-927http://dx.doi.org/10.1007/s13538-019-00706-0Brazilian Journal of Physics, v. 49, n. 6, p. 923-927, 2019.1678-44480103-9733http://hdl.handle.net/11449/19966410.1007/s13538-019-00706-02-s2.0-85075126483Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBrazilian Journal of Physicsinfo:eu-repo/semantics/openAccess2021-10-23T07:53:04Zoai:repositorio.unesp.br:11449/199664Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:46:08.775862Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map
title Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map
spellingShingle Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map
de Oliveira, Juliano A. [UNESP]
Bifurcations
Critical exponents
Gauss map
Scaling law
title_short Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map
title_full Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map
title_fullStr Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map
title_full_unstemmed Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map
title_sort Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map
author de Oliveira, Juliano A. [UNESP]
author_facet de Oliveira, Juliano A. [UNESP]
de Mendonça, Hans M. J. [UNESP]
da Silva, Anderson A. A. [UNESP]
Leonel, Edson D. [UNESP]
author_role author
author2 de Mendonça, Hans M. J. [UNESP]
da Silva, Anderson A. A. [UNESP]
Leonel, Edson D. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv de Oliveira, Juliano A. [UNESP]
de Mendonça, Hans M. J. [UNESP]
da Silva, Anderson A. A. [UNESP]
Leonel, Edson D. [UNESP]
dc.subject.por.fl_str_mv Bifurcations
Critical exponents
Gauss map
Scaling law
topic Bifurcations
Critical exponents
Gauss map
Scaling law
description The convergence to the stationary state is described using scaling arguments at a fold and a period doubling bifurcation in a one-dimensional Gauss map. Two procedures are used: (i) a phenomenological investigation leading to a set of critical exponents defining the universality class of the bifurcation and; (ii) analytical investigation that transforms, near the stationary state, the difference equation into an ordinary differential equation that is easily solved. The novelty of the procedure comes from the fact that it is firstly applied to the Gauss map and critical exponents for the fold bifurcations are defined.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-01
2020-12-12T01:46:03Z
2020-12-12T01:46:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/s13538-019-00706-0
Brazilian Journal of Physics, v. 49, n. 6, p. 923-927, 2019.
1678-4448
0103-9733
http://hdl.handle.net/11449/199664
10.1007/s13538-019-00706-0
2-s2.0-85075126483
url http://dx.doi.org/10.1007/s13538-019-00706-0
http://hdl.handle.net/11449/199664
identifier_str_mv Brazilian Journal of Physics, v. 49, n. 6, p. 923-927, 2019.
1678-4448
0103-9733
10.1007/s13538-019-00706-0
2-s2.0-85075126483
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Brazilian Journal of Physics
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 923-927
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129246085775360