Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/s13538-019-00706-0 http://hdl.handle.net/11449/199664 |
Resumo: | The convergence to the stationary state is described using scaling arguments at a fold and a period doubling bifurcation in a one-dimensional Gauss map. Two procedures are used: (i) a phenomenological investigation leading to a set of critical exponents defining the universality class of the bifurcation and; (ii) analytical investigation that transforms, near the stationary state, the difference equation into an ordinary differential equation that is easily solved. The novelty of the procedure comes from the fact that it is firstly applied to the Gauss map and critical exponents for the fold bifurcations are defined. |
id |
UNSP_248b3f29bb2e4b16bbcb87b6208019b4 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/199664 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss MapBifurcationsCritical exponentsGauss mapScaling lawThe convergence to the stationary state is described using scaling arguments at a fold and a period doubling bifurcation in a one-dimensional Gauss map. Two procedures are used: (i) a phenomenological investigation leading to a set of critical exponents defining the universality class of the bifurcation and; (ii) analytical investigation that transforms, near the stationary state, the difference equation into an ordinary differential equation that is easily solved. The novelty of the procedure comes from the fact that it is firstly applied to the Gauss map and critical exponents for the fold bifurcations are defined.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Estadual Paulista (UNESP) Câmpus de São João da Boa Vista, Av. Profa. Isette Corrêa Fontão, 505Departamento de Física Instituto de Geociências e Ciências Exatas Câmpus de Rio Claro Universidade Estadual Paulista (UNESP), Av.24A, 1515Universidade Estadual Paulista (UNESP) Câmpus de São João da Boa Vista, Av. Profa. Isette Corrêa Fontão, 505Departamento de Física Instituto de Geociências e Ciências Exatas Câmpus de Rio Claro Universidade Estadual Paulista (UNESP), Av.24A, 1515FAPESP: 2005/56253-8FAPESP: 2005/56253-8)(FAPESP: 2008/57528-9FAPESP: 2012/23688- 5FUNDUNESP: 2012/23688- 5FAPERJ: 2014/18672- 8FAPESP: 2015/22062- 3)FUNDUNESP: 2017/14414-2FAPERJ: 2018/14685-9FAPESP: 2018/14685-9CNPq: 303242/2018-3CNPq: 303707/2015-1CNPq: 311105/2015-7)CNPq: 421254/2016-5Universidade Estadual Paulista (Unesp)de Oliveira, Juliano A. [UNESP]de Mendonça, Hans M. J. [UNESP]da Silva, Anderson A. A. [UNESP]Leonel, Edson D. [UNESP]2020-12-12T01:46:03Z2020-12-12T01:46:03Z2019-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article923-927http://dx.doi.org/10.1007/s13538-019-00706-0Brazilian Journal of Physics, v. 49, n. 6, p. 923-927, 2019.1678-44480103-9733http://hdl.handle.net/11449/19966410.1007/s13538-019-00706-02-s2.0-85075126483Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBrazilian Journal of Physicsinfo:eu-repo/semantics/openAccess2021-10-23T07:53:04Zoai:repositorio.unesp.br:11449/199664Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:46:08.775862Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map |
title |
Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map |
spellingShingle |
Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map de Oliveira, Juliano A. [UNESP] Bifurcations Critical exponents Gauss map Scaling law |
title_short |
Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map |
title_full |
Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map |
title_fullStr |
Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map |
title_full_unstemmed |
Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map |
title_sort |
Critical Slowing Down at a Fold and a Period Doubling Bifurcations for a Gauss Map |
author |
de Oliveira, Juliano A. [UNESP] |
author_facet |
de Oliveira, Juliano A. [UNESP] de Mendonça, Hans M. J. [UNESP] da Silva, Anderson A. A. [UNESP] Leonel, Edson D. [UNESP] |
author_role |
author |
author2 |
de Mendonça, Hans M. J. [UNESP] da Silva, Anderson A. A. [UNESP] Leonel, Edson D. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
de Oliveira, Juliano A. [UNESP] de Mendonça, Hans M. J. [UNESP] da Silva, Anderson A. A. [UNESP] Leonel, Edson D. [UNESP] |
dc.subject.por.fl_str_mv |
Bifurcations Critical exponents Gauss map Scaling law |
topic |
Bifurcations Critical exponents Gauss map Scaling law |
description |
The convergence to the stationary state is described using scaling arguments at a fold and a period doubling bifurcation in a one-dimensional Gauss map. Two procedures are used: (i) a phenomenological investigation leading to a set of critical exponents defining the universality class of the bifurcation and; (ii) analytical investigation that transforms, near the stationary state, the difference equation into an ordinary differential equation that is easily solved. The novelty of the procedure comes from the fact that it is firstly applied to the Gauss map and critical exponents for the fold bifurcations are defined. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-12-01 2020-12-12T01:46:03Z 2020-12-12T01:46:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/s13538-019-00706-0 Brazilian Journal of Physics, v. 49, n. 6, p. 923-927, 2019. 1678-4448 0103-9733 http://hdl.handle.net/11449/199664 10.1007/s13538-019-00706-0 2-s2.0-85075126483 |
url |
http://dx.doi.org/10.1007/s13538-019-00706-0 http://hdl.handle.net/11449/199664 |
identifier_str_mv |
Brazilian Journal of Physics, v. 49, n. 6, p. 923-927, 2019. 1678-4448 0103-9733 10.1007/s13538-019-00706-0 2-s2.0-85075126483 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Brazilian Journal of Physics |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
923-927 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129246085775360 |