On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification

Detalhes bibliográficos
Autor(a) principal: Osaku, D.
Data de Publicação: 2014
Outros Autores: Levada, A. L. M., Papa, J. P. [UNESP], BayroCorrochano, E., Hancock, E.
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/184745
Resumo: Contextual classification considers the information about a sample's neighborhood to improve standard pixel-based classification approaches. In this work, we evaluated four different Markovian models for Optimum-Path Forest contextual classification considering land use recognition in remote sensing data. Some insights about the situations in which each of them should be applied are stated, as well as the idea behind them is explained.
id UNSP_2599996af2f1014d38326d856bc7df41
oai_identifier_str oai:repositorio.unesp.br:11449/184745
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest ClassificationOptimum-Path ForestContextual ClassificationMarkov Random FieldsContextual classification considers the information about a sample's neighborhood to improve standard pixel-based classification approaches. In this work, we evaluated four different Markovian models for Optimum-Path Forest contextual classification considering land use recognition in remote sensing data. Some insights about the situations in which each of them should be applied are stated, as well as the idea behind them is explained.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fed Univ Sao Carlos UFSCar, Dept Comp Sci, Sao Carlos, SP, BrazilSao Paulo State Univ UNESP, Dept Comp, Bauru, BrazilSao Paulo State Univ UNESP, Dept Comp, Bauru, BrazilFAPESP: 2012/064729FAPESP: 2013/20387-7CNPq: 303182/2011-3CNPq: 470571/2013-6SpringerUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Osaku, D.Levada, A. L. M.Papa, J. P. [UNESP]BayroCorrochano, E.Hancock, E.2019-10-04T12:29:42Z2019-10-04T12:29:42Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject462-469Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 462-469, 2014.0302-9743http://hdl.handle.net/11449/184745WOS:000346407400057Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProgress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/184745Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:41:41.769594Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification
title On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification
spellingShingle On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification
Osaku, D.
Optimum-Path Forest
Contextual Classification
Markov Random Fields
title_short On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification
title_full On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification
title_fullStr On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification
title_full_unstemmed On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification
title_sort On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification
author Osaku, D.
author_facet Osaku, D.
Levada, A. L. M.
Papa, J. P. [UNESP]
BayroCorrochano, E.
Hancock, E.
author_role author
author2 Levada, A. L. M.
Papa, J. P. [UNESP]
BayroCorrochano, E.
Hancock, E.
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Osaku, D.
Levada, A. L. M.
Papa, J. P. [UNESP]
BayroCorrochano, E.
Hancock, E.
dc.subject.por.fl_str_mv Optimum-Path Forest
Contextual Classification
Markov Random Fields
topic Optimum-Path Forest
Contextual Classification
Markov Random Fields
description Contextual classification considers the information about a sample's neighborhood to improve standard pixel-based classification approaches. In this work, we evaluated four different Markovian models for Optimum-Path Forest contextual classification considering land use recognition in remote sensing data. Some insights about the situations in which each of them should be applied are stated, as well as the idea behind them is explained.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-01
2019-10-04T12:29:42Z
2019-10-04T12:29:42Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 462-469, 2014.
0302-9743
http://hdl.handle.net/11449/184745
WOS:000346407400057
identifier_str_mv Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 462-469, 2014.
0302-9743
WOS:000346407400057
url http://hdl.handle.net/11449/184745
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 462-469
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128551051853824