On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://hdl.handle.net/11449/184745 |
Resumo: | Contextual classification considers the information about a sample's neighborhood to improve standard pixel-based classification approaches. In this work, we evaluated four different Markovian models for Optimum-Path Forest contextual classification considering land use recognition in remote sensing data. Some insights about the situations in which each of them should be applied are stated, as well as the idea behind them is explained. |
id |
UNSP_2599996af2f1014d38326d856bc7df41 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/184745 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest ClassificationOptimum-Path ForestContextual ClassificationMarkov Random FieldsContextual classification considers the information about a sample's neighborhood to improve standard pixel-based classification approaches. In this work, we evaluated four different Markovian models for Optimum-Path Forest contextual classification considering land use recognition in remote sensing data. Some insights about the situations in which each of them should be applied are stated, as well as the idea behind them is explained.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fed Univ Sao Carlos UFSCar, Dept Comp Sci, Sao Carlos, SP, BrazilSao Paulo State Univ UNESP, Dept Comp, Bauru, BrazilSao Paulo State Univ UNESP, Dept Comp, Bauru, BrazilFAPESP: 2012/064729FAPESP: 2013/20387-7CNPq: 303182/2011-3CNPq: 470571/2013-6SpringerUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Osaku, D.Levada, A. L. M.Papa, J. P. [UNESP]BayroCorrochano, E.Hancock, E.2019-10-04T12:29:42Z2019-10-04T12:29:42Z2014-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject462-469Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 462-469, 2014.0302-9743http://hdl.handle.net/11449/184745WOS:000346407400057Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProgress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/184745Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:41:41.769594Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification |
title |
On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification |
spellingShingle |
On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification Osaku, D. Optimum-Path Forest Contextual Classification Markov Random Fields |
title_short |
On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification |
title_full |
On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification |
title_fullStr |
On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification |
title_full_unstemmed |
On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification |
title_sort |
On the Influence of Markovian Models for Contextual-Based Optimum-Path Forest Classification |
author |
Osaku, D. |
author_facet |
Osaku, D. Levada, A. L. M. Papa, J. P. [UNESP] BayroCorrochano, E. Hancock, E. |
author_role |
author |
author2 |
Levada, A. L. M. Papa, J. P. [UNESP] BayroCorrochano, E. Hancock, E. |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Osaku, D. Levada, A. L. M. Papa, J. P. [UNESP] BayroCorrochano, E. Hancock, E. |
dc.subject.por.fl_str_mv |
Optimum-Path Forest Contextual Classification Markov Random Fields |
topic |
Optimum-Path Forest Contextual Classification Markov Random Fields |
description |
Contextual classification considers the information about a sample's neighborhood to improve standard pixel-based classification approaches. In this work, we evaluated four different Markovian models for Optimum-Path Forest contextual classification considering land use recognition in remote sensing data. Some insights about the situations in which each of them should be applied are stated, as well as the idea behind them is explained. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-01-01 2019-10-04T12:29:42Z 2019-10-04T12:29:42Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 462-469, 2014. 0302-9743 http://hdl.handle.net/11449/184745 WOS:000346407400057 |
identifier_str_mv |
Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014. Berlin: Springer-verlag Berlin, v. 8827, p. 462-469, 2014. 0302-9743 WOS:000346407400057 |
url |
http://hdl.handle.net/11449/184745 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Progress In Pattern Recognition Image Analysis, Computer Vision, And Applications, Ciarp 2014 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
462-469 |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128551051853824 |