Improving land cover classification through contextual-based optimum-path forest

Detalhes bibliográficos
Autor(a) principal: Osaku, D.
Data de Publicação: 2015
Outros Autores: Nakamura, R. Y. M., Pereira, L. A. M., Pisani, R. J., Levada, A. L. M., Cappabianco, F. A. M., Falco, A. X., Papa, Joao P. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.ins.2015.06.020
http://hdl.handle.net/11449/160879
Resumo: Traditional machine learning algorithms very often assume statistically independent data samples. However, this is clearly not the case in remote sensing image applications, in which pixels present spatial and/or temporal dependencies. In this work, it has been presented an approach to improve land cover image classification using a contextual approach based on optimum-path forest (OPF) and the well-known Markov random fields (MRFs), hereinafter called OPF-MRF. In addition, it is also introduced a framework to the optimization of the amount of contextual information used by OPF-MRF. Experiments over high- and medium-resolution satellite (CBERS-2B, Landsat 5 TM, lkonos-2 MS and Geoeye) and radar (ALOS-PALSAR) images covering the area of two Brazilian cities have shown the proposed approach can overcome several shortcomings related to standard OPF classification. In some cases, the proposed approach outperformed traditional OFF in about 9% of recognition rate, which is crucial for land cover classification. (C) 2015 Elsevier Inc. All rights reserved.
id UNSP_2f1f52dff65c94b02692caef27805068
oai_identifier_str oai:repositorio.unesp.br:11449/160879
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Improving land cover classification through contextual-based optimum-path forestLand cover classificationOptimum-path forestContextual classificationTraditional machine learning algorithms very often assume statistically independent data samples. However, this is clearly not the case in remote sensing image applications, in which pixels present spatial and/or temporal dependencies. In this work, it has been presented an approach to improve land cover image classification using a contextual approach based on optimum-path forest (OPF) and the well-known Markov random fields (MRFs), hereinafter called OPF-MRF. In addition, it is also introduced a framework to the optimization of the amount of contextual information used by OPF-MRF. Experiments over high- and medium-resolution satellite (CBERS-2B, Landsat 5 TM, lkonos-2 MS and Geoeye) and radar (ALOS-PALSAR) images covering the area of two Brazilian cities have shown the proposed approach can overcome several shortcomings related to standard OPF classification. In some cases, the proposed approach outperformed traditional OFF in about 9% of recognition rate, which is crucial for land cover classification. (C) 2015 Elsevier Inc. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UFSCar Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilBig Data Brasil, Sao Paulo, BrazilUniv Estadual Campinas, Inst Comp, Campinas, SP, BrazilWestern Univ Sao Paulo, Presidente Prudente, SP, BrazilUniv Fed Sao Paulo, Sao Jose Dos Campos, BrazilSao Paulo State Univ, Dept Comp, Bauru, BrazilSao Paulo State Univ, Dept Comp, Bauru, BrazilFAPESP: 2009/16206-1FAPESP: 2012/06472-9FAPESP: 2013/20387-7FAPESP: 2014/16250-9CNPq: 303182/2011-3CNPq: 470571/2013-6CNPq: 306166/2014-3Elsevier B.V.Universidade Federal de São Carlos (UFSCar)Big Data BrasilUniversidade Estadual de Campinas (UNICAMP)Universidade de São Paulo (USP)Universidade Federal de São Paulo (UNIFESP)Universidade Estadual Paulista (Unesp)Osaku, D.Nakamura, R. Y. M.Pereira, L. A. M.Pisani, R. J.Levada, A. L. M.Cappabianco, F. A. M.Falco, A. X.Papa, Joao P. [UNESP]2018-11-26T16:17:06Z2018-11-26T16:17:06Z2015-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article60-87application/pdfhttp://dx.doi.org/10.1016/j.ins.2015.06.020Information Sciences. New York: Elsevier Science Inc, v. 324, p. 60-87, 2015.0020-0255http://hdl.handle.net/11449/16087910.1016/j.ins.2015.06.020WOS:000362307200005WOS000362307200005.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInformation Sciences1,635info:eu-repo/semantics/openAccess2024-04-23T16:10:46Zoai:repositorio.unesp.br:11449/160879Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:52:44.778118Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Improving land cover classification through contextual-based optimum-path forest
title Improving land cover classification through contextual-based optimum-path forest
spellingShingle Improving land cover classification through contextual-based optimum-path forest
Osaku, D.
Land cover classification
Optimum-path forest
Contextual classification
title_short Improving land cover classification through contextual-based optimum-path forest
title_full Improving land cover classification through contextual-based optimum-path forest
title_fullStr Improving land cover classification through contextual-based optimum-path forest
title_full_unstemmed Improving land cover classification through contextual-based optimum-path forest
title_sort Improving land cover classification through contextual-based optimum-path forest
author Osaku, D.
author_facet Osaku, D.
Nakamura, R. Y. M.
Pereira, L. A. M.
Pisani, R. J.
Levada, A. L. M.
Cappabianco, F. A. M.
Falco, A. X.
Papa, Joao P. [UNESP]
author_role author
author2 Nakamura, R. Y. M.
Pereira, L. A. M.
Pisani, R. J.
Levada, A. L. M.
Cappabianco, F. A. M.
Falco, A. X.
Papa, Joao P. [UNESP]
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Big Data Brasil
Universidade Estadual de Campinas (UNICAMP)
Universidade de São Paulo (USP)
Universidade Federal de São Paulo (UNIFESP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Osaku, D.
Nakamura, R. Y. M.
Pereira, L. A. M.
Pisani, R. J.
Levada, A. L. M.
Cappabianco, F. A. M.
Falco, A. X.
Papa, Joao P. [UNESP]
dc.subject.por.fl_str_mv Land cover classification
Optimum-path forest
Contextual classification
topic Land cover classification
Optimum-path forest
Contextual classification
description Traditional machine learning algorithms very often assume statistically independent data samples. However, this is clearly not the case in remote sensing image applications, in which pixels present spatial and/or temporal dependencies. In this work, it has been presented an approach to improve land cover image classification using a contextual approach based on optimum-path forest (OPF) and the well-known Markov random fields (MRFs), hereinafter called OPF-MRF. In addition, it is also introduced a framework to the optimization of the amount of contextual information used by OPF-MRF. Experiments over high- and medium-resolution satellite (CBERS-2B, Landsat 5 TM, lkonos-2 MS and Geoeye) and radar (ALOS-PALSAR) images covering the area of two Brazilian cities have shown the proposed approach can overcome several shortcomings related to standard OPF classification. In some cases, the proposed approach outperformed traditional OFF in about 9% of recognition rate, which is crucial for land cover classification. (C) 2015 Elsevier Inc. All rights reserved.
publishDate 2015
dc.date.none.fl_str_mv 2015-12-10
2018-11-26T16:17:06Z
2018-11-26T16:17:06Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.ins.2015.06.020
Information Sciences. New York: Elsevier Science Inc, v. 324, p. 60-87, 2015.
0020-0255
http://hdl.handle.net/11449/160879
10.1016/j.ins.2015.06.020
WOS:000362307200005
WOS000362307200005.pdf
url http://dx.doi.org/10.1016/j.ins.2015.06.020
http://hdl.handle.net/11449/160879
identifier_str_mv Information Sciences. New York: Elsevier Science Inc, v. 324, p. 60-87, 2015.
0020-0255
10.1016/j.ins.2015.06.020
WOS:000362307200005
WOS000362307200005.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Information Sciences
1,635
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 60-87
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128714393780224