Improving land cover classification through contextual-based optimum-path forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.ins.2015.06.020 http://hdl.handle.net/11449/160879 |
Resumo: | Traditional machine learning algorithms very often assume statistically independent data samples. However, this is clearly not the case in remote sensing image applications, in which pixels present spatial and/or temporal dependencies. In this work, it has been presented an approach to improve land cover image classification using a contextual approach based on optimum-path forest (OPF) and the well-known Markov random fields (MRFs), hereinafter called OPF-MRF. In addition, it is also introduced a framework to the optimization of the amount of contextual information used by OPF-MRF. Experiments over high- and medium-resolution satellite (CBERS-2B, Landsat 5 TM, lkonos-2 MS and Geoeye) and radar (ALOS-PALSAR) images covering the area of two Brazilian cities have shown the proposed approach can overcome several shortcomings related to standard OPF classification. In some cases, the proposed approach outperformed traditional OFF in about 9% of recognition rate, which is crucial for land cover classification. (C) 2015 Elsevier Inc. All rights reserved. |
id |
UNSP_2f1f52dff65c94b02692caef27805068 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/160879 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Improving land cover classification through contextual-based optimum-path forestLand cover classificationOptimum-path forestContextual classificationTraditional machine learning algorithms very often assume statistically independent data samples. However, this is clearly not the case in remote sensing image applications, in which pixels present spatial and/or temporal dependencies. In this work, it has been presented an approach to improve land cover image classification using a contextual approach based on optimum-path forest (OPF) and the well-known Markov random fields (MRFs), hereinafter called OPF-MRF. In addition, it is also introduced a framework to the optimization of the amount of contextual information used by OPF-MRF. Experiments over high- and medium-resolution satellite (CBERS-2B, Landsat 5 TM, lkonos-2 MS and Geoeye) and radar (ALOS-PALSAR) images covering the area of two Brazilian cities have shown the proposed approach can overcome several shortcomings related to standard OPF classification. In some cases, the proposed approach outperformed traditional OFF in about 9% of recognition rate, which is crucial for land cover classification. (C) 2015 Elsevier Inc. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UFSCar Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilBig Data Brasil, Sao Paulo, BrazilUniv Estadual Campinas, Inst Comp, Campinas, SP, BrazilWestern Univ Sao Paulo, Presidente Prudente, SP, BrazilUniv Fed Sao Paulo, Sao Jose Dos Campos, BrazilSao Paulo State Univ, Dept Comp, Bauru, BrazilSao Paulo State Univ, Dept Comp, Bauru, BrazilFAPESP: 2009/16206-1FAPESP: 2012/06472-9FAPESP: 2013/20387-7FAPESP: 2014/16250-9CNPq: 303182/2011-3CNPq: 470571/2013-6CNPq: 306166/2014-3Elsevier B.V.Universidade Federal de São Carlos (UFSCar)Big Data BrasilUniversidade Estadual de Campinas (UNICAMP)Universidade de São Paulo (USP)Universidade Federal de São Paulo (UNIFESP)Universidade Estadual Paulista (Unesp)Osaku, D.Nakamura, R. Y. M.Pereira, L. A. M.Pisani, R. J.Levada, A. L. M.Cappabianco, F. A. M.Falco, A. X.Papa, Joao P. [UNESP]2018-11-26T16:17:06Z2018-11-26T16:17:06Z2015-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article60-87application/pdfhttp://dx.doi.org/10.1016/j.ins.2015.06.020Information Sciences. New York: Elsevier Science Inc, v. 324, p. 60-87, 2015.0020-0255http://hdl.handle.net/11449/16087910.1016/j.ins.2015.06.020WOS:000362307200005WOS000362307200005.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengInformation Sciences1,635info:eu-repo/semantics/openAccess2024-04-23T16:10:46Zoai:repositorio.unesp.br:11449/160879Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:52:44.778118Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Improving land cover classification through contextual-based optimum-path forest |
title |
Improving land cover classification through contextual-based optimum-path forest |
spellingShingle |
Improving land cover classification through contextual-based optimum-path forest Osaku, D. Land cover classification Optimum-path forest Contextual classification |
title_short |
Improving land cover classification through contextual-based optimum-path forest |
title_full |
Improving land cover classification through contextual-based optimum-path forest |
title_fullStr |
Improving land cover classification through contextual-based optimum-path forest |
title_full_unstemmed |
Improving land cover classification through contextual-based optimum-path forest |
title_sort |
Improving land cover classification through contextual-based optimum-path forest |
author |
Osaku, D. |
author_facet |
Osaku, D. Nakamura, R. Y. M. Pereira, L. A. M. Pisani, R. J. Levada, A. L. M. Cappabianco, F. A. M. Falco, A. X. Papa, Joao P. [UNESP] |
author_role |
author |
author2 |
Nakamura, R. Y. M. Pereira, L. A. M. Pisani, R. J. Levada, A. L. M. Cappabianco, F. A. M. Falco, A. X. Papa, Joao P. [UNESP] |
author2_role |
author author author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Big Data Brasil Universidade Estadual de Campinas (UNICAMP) Universidade de São Paulo (USP) Universidade Federal de São Paulo (UNIFESP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Osaku, D. Nakamura, R. Y. M. Pereira, L. A. M. Pisani, R. J. Levada, A. L. M. Cappabianco, F. A. M. Falco, A. X. Papa, Joao P. [UNESP] |
dc.subject.por.fl_str_mv |
Land cover classification Optimum-path forest Contextual classification |
topic |
Land cover classification Optimum-path forest Contextual classification |
description |
Traditional machine learning algorithms very often assume statistically independent data samples. However, this is clearly not the case in remote sensing image applications, in which pixels present spatial and/or temporal dependencies. In this work, it has been presented an approach to improve land cover image classification using a contextual approach based on optimum-path forest (OPF) and the well-known Markov random fields (MRFs), hereinafter called OPF-MRF. In addition, it is also introduced a framework to the optimization of the amount of contextual information used by OPF-MRF. Experiments over high- and medium-resolution satellite (CBERS-2B, Landsat 5 TM, lkonos-2 MS and Geoeye) and radar (ALOS-PALSAR) images covering the area of two Brazilian cities have shown the proposed approach can overcome several shortcomings related to standard OPF classification. In some cases, the proposed approach outperformed traditional OFF in about 9% of recognition rate, which is crucial for land cover classification. (C) 2015 Elsevier Inc. All rights reserved. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-12-10 2018-11-26T16:17:06Z 2018-11-26T16:17:06Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.ins.2015.06.020 Information Sciences. New York: Elsevier Science Inc, v. 324, p. 60-87, 2015. 0020-0255 http://hdl.handle.net/11449/160879 10.1016/j.ins.2015.06.020 WOS:000362307200005 WOS000362307200005.pdf |
url |
http://dx.doi.org/10.1016/j.ins.2015.06.020 http://hdl.handle.net/11449/160879 |
identifier_str_mv |
Information Sciences. New York: Elsevier Science Inc, v. 324, p. 60-87, 2015. 0020-0255 10.1016/j.ins.2015.06.020 WOS:000362307200005 WOS000362307200005.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Information Sciences 1,635 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
60-87 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128714393780224 |