Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/LGRS.2016.2541458 http://hdl.handle.net/11449/165152 |
Resumo: | Contextual-based learning aims at considering neighboring pixels to improve pixelwise-oriented classification techniques. In this letter, we presented a metaheuristic framework for the optimization of nondiscrete Markovian models considering the optimum-path forest (OPF) classifier, and we proposed a post-processing procedure to avoid overcorrection over high-frequency regions. The proposed approach outperformed previous results obtained with standard OPF in satellite imagery. |
id |
UNSP_4cc189ea31d977bc575bf6e5eb6dd083 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/165152 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover ClassificationContextual classificationoptimum-path forest (OPF)Contextual-based learning aims at considering neighboring pixels to improve pixelwise-oriented classification techniques. In this letter, we presented a metaheuristic framework for the optimization of nondiscrete Markovian models considering the optimum-path forest (OPF) classifier, and we proposed a post-processing procedure to avoid overcorrection over high-frequency regions. The proposed approach outperformed previous results obtained with standard OPF in satellite imagery.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Carlos, Dept Comp Sci, BR-13565905 Sao Carlos, SP, BrazilSao Paulo State Univ, Dept Comp, BR-01049010 Sao Paulo, BrazilSao Paulo State Univ, Dept Comp, BR-01049010 Sao Paulo, BrazilFAPESP: 2012/06472-9FAPESP: 2013/20387-7FAPESP: 2014/16250-9CNPq: 303182/2011-3CNPq: 470571/2013-6CNPq: 306166/2014-3Ieee-inst Electrical Electronics Engineers IncUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Osaku, DanielPereira, Danillo R. [UNESP]Levada, Alexandre L. M.Papa, Joao P. [UNESP]2018-11-27T13:40:00Z2018-11-27T13:40:00Z2016-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article735-739application/pdfhttp://dx.doi.org/10.1109/LGRS.2016.2541458Ieee Geoscience And Remote Sensing Letters. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 13, n. 5, p. 735-739, 2016.1545-598Xhttp://hdl.handle.net/11449/16515210.1109/LGRS.2016.2541458WOS:000375274700026WOS000375274700026.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Geoscience And Remote Sensing Lettersinfo:eu-repo/semantics/openAccess2024-04-23T16:11:01Zoai:repositorio.unesp.br:11449/165152Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:04:53.574573Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification |
title |
Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification |
spellingShingle |
Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification Osaku, Daniel Contextual classification optimum-path forest (OPF) |
title_short |
Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification |
title_full |
Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification |
title_fullStr |
Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification |
title_full_unstemmed |
Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification |
title_sort |
Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification |
author |
Osaku, Daniel |
author_facet |
Osaku, Daniel Pereira, Danillo R. [UNESP] Levada, Alexandre L. M. Papa, Joao P. [UNESP] |
author_role |
author |
author2 |
Pereira, Danillo R. [UNESP] Levada, Alexandre L. M. Papa, Joao P. [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Osaku, Daniel Pereira, Danillo R. [UNESP] Levada, Alexandre L. M. Papa, Joao P. [UNESP] |
dc.subject.por.fl_str_mv |
Contextual classification optimum-path forest (OPF) |
topic |
Contextual classification optimum-path forest (OPF) |
description |
Contextual-based learning aims at considering neighboring pixels to improve pixelwise-oriented classification techniques. In this letter, we presented a metaheuristic framework for the optimization of nondiscrete Markovian models considering the optimum-path forest (OPF) classifier, and we proposed a post-processing procedure to avoid overcorrection over high-frequency regions. The proposed approach outperformed previous results obtained with standard OPF in satellite imagery. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05-01 2018-11-27T13:40:00Z 2018-11-27T13:40:00Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/LGRS.2016.2541458 Ieee Geoscience And Remote Sensing Letters. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 13, n. 5, p. 735-739, 2016. 1545-598X http://hdl.handle.net/11449/165152 10.1109/LGRS.2016.2541458 WOS:000375274700026 WOS000375274700026.pdf |
url |
http://dx.doi.org/10.1109/LGRS.2016.2541458 http://hdl.handle.net/11449/165152 |
identifier_str_mv |
Ieee Geoscience And Remote Sensing Letters. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 13, n. 5, p. 735-739, 2016. 1545-598X 10.1109/LGRS.2016.2541458 WOS:000375274700026 WOS000375274700026.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Ieee Geoscience And Remote Sensing Letters |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
735-739 application/pdf |
dc.publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
publisher.none.fl_str_mv |
Ieee-inst Electrical Electronics Engineers Inc |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129580706299904 |