Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification

Detalhes bibliográficos
Autor(a) principal: Osaku, Daniel
Data de Publicação: 2016
Outros Autores: Pereira, Danillo R. [UNESP], Levada, Alexandre L. M., Papa, Joao P. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/LGRS.2016.2541458
http://hdl.handle.net/11449/165152
Resumo: Contextual-based learning aims at considering neighboring pixels to improve pixelwise-oriented classification techniques. In this letter, we presented a metaheuristic framework for the optimization of nondiscrete Markovian models considering the optimum-path forest (OPF) classifier, and we proposed a post-processing procedure to avoid overcorrection over high-frequency regions. The proposed approach outperformed previous results obtained with standard OPF in satellite imagery.
id UNSP_4cc189ea31d977bc575bf6e5eb6dd083
oai_identifier_str oai:repositorio.unesp.br:11449/165152
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover ClassificationContextual classificationoptimum-path forest (OPF)Contextual-based learning aims at considering neighboring pixels to improve pixelwise-oriented classification techniques. In this letter, we presented a metaheuristic framework for the optimization of nondiscrete Markovian models considering the optimum-path forest (OPF) classifier, and we proposed a post-processing procedure to avoid overcorrection over high-frequency regions. The proposed approach outperformed previous results obtained with standard OPF in satellite imagery.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Carlos, Dept Comp Sci, BR-13565905 Sao Carlos, SP, BrazilSao Paulo State Univ, Dept Comp, BR-01049010 Sao Paulo, BrazilSao Paulo State Univ, Dept Comp, BR-01049010 Sao Paulo, BrazilFAPESP: 2012/06472-9FAPESP: 2013/20387-7FAPESP: 2014/16250-9CNPq: 303182/2011-3CNPq: 470571/2013-6CNPq: 306166/2014-3Ieee-inst Electrical Electronics Engineers IncUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Osaku, DanielPereira, Danillo R. [UNESP]Levada, Alexandre L. M.Papa, Joao P. [UNESP]2018-11-27T13:40:00Z2018-11-27T13:40:00Z2016-05-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article735-739application/pdfhttp://dx.doi.org/10.1109/LGRS.2016.2541458Ieee Geoscience And Remote Sensing Letters. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 13, n. 5, p. 735-739, 2016.1545-598Xhttp://hdl.handle.net/11449/16515210.1109/LGRS.2016.2541458WOS:000375274700026WOS000375274700026.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengIeee Geoscience And Remote Sensing Lettersinfo:eu-repo/semantics/openAccess2024-04-23T16:11:01Zoai:repositorio.unesp.br:11449/165152Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-06T00:04:53.574573Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification
title Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification
spellingShingle Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification
Osaku, Daniel
Contextual classification
optimum-path forest (OPF)
title_short Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification
title_full Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification
title_fullStr Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification
title_full_unstemmed Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification
title_sort Fine-Tuning Contextual-Based Optimum-Path Forest for Land-Cover Classification
author Osaku, Daniel
author_facet Osaku, Daniel
Pereira, Danillo R. [UNESP]
Levada, Alexandre L. M.
Papa, Joao P. [UNESP]
author_role author
author2 Pereira, Danillo R. [UNESP]
Levada, Alexandre L. M.
Papa, Joao P. [UNESP]
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Osaku, Daniel
Pereira, Danillo R. [UNESP]
Levada, Alexandre L. M.
Papa, Joao P. [UNESP]
dc.subject.por.fl_str_mv Contextual classification
optimum-path forest (OPF)
topic Contextual classification
optimum-path forest (OPF)
description Contextual-based learning aims at considering neighboring pixels to improve pixelwise-oriented classification techniques. In this letter, we presented a metaheuristic framework for the optimization of nondiscrete Markovian models considering the optimum-path forest (OPF) classifier, and we proposed a post-processing procedure to avoid overcorrection over high-frequency regions. The proposed approach outperformed previous results obtained with standard OPF in satellite imagery.
publishDate 2016
dc.date.none.fl_str_mv 2016-05-01
2018-11-27T13:40:00Z
2018-11-27T13:40:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/LGRS.2016.2541458
Ieee Geoscience And Remote Sensing Letters. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 13, n. 5, p. 735-739, 2016.
1545-598X
http://hdl.handle.net/11449/165152
10.1109/LGRS.2016.2541458
WOS:000375274700026
WOS000375274700026.pdf
url http://dx.doi.org/10.1109/LGRS.2016.2541458
http://hdl.handle.net/11449/165152
identifier_str_mv Ieee Geoscience And Remote Sensing Letters. Piscataway: Ieee-inst Electrical Electronics Engineers Inc, v. 13, n. 5, p. 735-739, 2016.
1545-598X
10.1109/LGRS.2016.2541458
WOS:000375274700026
WOS000375274700026.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Ieee Geoscience And Remote Sensing Letters
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 735-739
application/pdf
dc.publisher.none.fl_str_mv Ieee-inst Electrical Electronics Engineers Inc
publisher.none.fl_str_mv Ieee-inst Electrical Electronics Engineers Inc
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129580706299904