Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ISGTLatinAmerica52371.2021.9543010 http://hdl.handle.net/11449/222702 |
Resumo: | Planning the expansion and the new topology of distribution networks requires knowing the location and characterization of the load as well as its future growth. Spatial load forecasting is a key tool in this task, providing high spatial resolution and adequate temporal granularity. Nowadays, with the penetration of distributed energy resources, multiple microgrid connection strategies, and implementation of self-healing and protection schemes, it is necessary to identify load blocks to plan the new active network architecture. Based on spatial load forecasting information, this paper proposes a graph partitioning technique to create load clusters in the distribution feeders. A weighted graph is constructed by means of a minimum spanning tree that allows to consider adjacency relations. The results of the simulation, carried out in a real distribution network, have demonstrated the effectiveness of the proposed method. |
id |
UNSP_25f1f9a2f95b92921db7a72edb03caf6 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/222702 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecastingClusteringDistribution planningGraph partitioningMicrogridsMinimal spanning treeSpatial load forecastingPlanning the expansion and the new topology of distribution networks requires knowing the location and characterization of the load as well as its future growth. Spatial load forecasting is a key tool in this task, providing high spatial resolution and adequate temporal granularity. Nowadays, with the penetration of distributed energy resources, multiple microgrid connection strategies, and implementation of self-healing and protection schemes, it is necessary to identify load blocks to plan the new active network architecture. Based on spatial load forecasting information, this paper proposes a graph partitioning technique to create load clusters in the distribution feeders. A weighted graph is constructed by means of a minimum spanning tree that allows to consider adjacency relations. The results of the simulation, carried out in a real distribution network, have demonstrated the effectiveness of the proposed method.Universidade Estadual Paulista Júlio de Mesquita Filho - UNESP Department of Electrical Engineering, SPUniversity of Cuenca School of Electrical EngineeringUniversity of Cuenca Electronics and Telecommunications Department of Electrical EngineeringUniversidade Estadual Paulista Júlio de Mesquita Filho - UNESP Department of Electrical Engineering, SPUniversidade Estadual Paulista (UNESP)School of Electrical EngineeringElectronics and TelecommunicationsZambrano-Asanza, S. [UNESP]Cando, Diego J.Chuqui, Freddy H.Sanango, JuanFranco, John F. [UNESP]2022-04-28T19:46:19Z2022-04-28T19:46:19Z2021-09-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjecthttp://dx.doi.org/10.1109/ISGTLatinAmerica52371.2021.95430102021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021.http://hdl.handle.net/11449/22270210.1109/ISGTLatinAmerica52371.2021.95430102-s2.0-85117610692Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021info:eu-repo/semantics/openAccess2022-04-28T19:46:20Zoai:repositorio.unesp.br:11449/222702Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:43:48.916120Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting |
title |
Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting |
spellingShingle |
Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting Zambrano-Asanza, S. [UNESP] Clustering Distribution planning Graph partitioning Microgrids Minimal spanning tree Spatial load forecasting |
title_short |
Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting |
title_full |
Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting |
title_fullStr |
Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting |
title_full_unstemmed |
Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting |
title_sort |
Graph partitioning-based clustering for the planning of distribution network topology using spatial- temporal load forecasting |
author |
Zambrano-Asanza, S. [UNESP] |
author_facet |
Zambrano-Asanza, S. [UNESP] Cando, Diego J. Chuqui, Freddy H. Sanango, Juan Franco, John F. [UNESP] |
author_role |
author |
author2 |
Cando, Diego J. Chuqui, Freddy H. Sanango, Juan Franco, John F. [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) School of Electrical Engineering Electronics and Telecommunications |
dc.contributor.author.fl_str_mv |
Zambrano-Asanza, S. [UNESP] Cando, Diego J. Chuqui, Freddy H. Sanango, Juan Franco, John F. [UNESP] |
dc.subject.por.fl_str_mv |
Clustering Distribution planning Graph partitioning Microgrids Minimal spanning tree Spatial load forecasting |
topic |
Clustering Distribution planning Graph partitioning Microgrids Minimal spanning tree Spatial load forecasting |
description |
Planning the expansion and the new topology of distribution networks requires knowing the location and characterization of the load as well as its future growth. Spatial load forecasting is a key tool in this task, providing high spatial resolution and adequate temporal granularity. Nowadays, with the penetration of distributed energy resources, multiple microgrid connection strategies, and implementation of self-healing and protection schemes, it is necessary to identify load blocks to plan the new active network architecture. Based on spatial load forecasting information, this paper proposes a graph partitioning technique to create load clusters in the distribution feeders. A weighted graph is constructed by means of a minimum spanning tree that allows to consider adjacency relations. The results of the simulation, carried out in a real distribution network, have demonstrated the effectiveness of the proposed method. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-09-15 2022-04-28T19:46:19Z 2022-04-28T19:46:19Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ISGTLatinAmerica52371.2021.9543010 2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021. http://hdl.handle.net/11449/222702 10.1109/ISGTLatinAmerica52371.2021.9543010 2-s2.0-85117610692 |
url |
http://dx.doi.org/10.1109/ISGTLatinAmerica52371.2021.9543010 http://hdl.handle.net/11449/222702 |
identifier_str_mv |
2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021. 10.1109/ISGTLatinAmerica52371.2021.9543010 2-s2.0-85117610692 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2021 IEEE PES Innovative Smart Grid Technologies Conference - Latin America, ISGT Latin America 2021 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129455479062528 |