Improving semi-supervised learning through optimum connectivity

Detalhes bibliográficos
Autor(a) principal: Amorim, Willian P.
Data de Publicação: 2016
Outros Autores: Falcao, Alexandre X., Papa, Joao P. [UNESP], Carvalho, Marcelo H.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.patcog.2016.04.020
http://hdl.handle.net/11449/161931
Resumo: The annotation of large data sets by a classifier is a problem whose challenge increases as the number of labeled samples used to train the classifier reduces in comparison to the number of unlabeled samples. In this context, semi-supervised learning methods aim at discovering and labeling informative samples among the unlabeled ones, such that their addition to the correct class in the training set can improve classification performance. We present a semi-supervised learning approach that connects unlabeled and labeled samples as nodes of a minimum-spanning tree and partitions the tree into an optimum-path forest rooted at the labeled nodes. It is suitable when most samples from a same class are more closely connected through sequences of nearby samples than samples from distinct classes, which is usually the case in data sets with a reasonable relation between number of samples and feature space dimension. The proposed solution is validated by using several data sets and state-of-the-art methods as baselines. (C) 2016 Elsevier Ltd. All rights reserved.
id UNSP_2d7defe936d0750f52025d1d5b33ddc4
oai_identifier_str oai:repositorio.unesp.br:11449/161931
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Improving semi-supervised learning through optimum connectivitySemi-supervised learningOptimum-path forest classifiersThe annotation of large data sets by a classifier is a problem whose challenge increases as the number of labeled samples used to train the classifier reduces in comparison to the number of unlabeled samples. In this context, semi-supervised learning methods aim at discovering and labeling informative samples among the unlabeled ones, such that their addition to the correct class in the training set can improve classification performance. We present a semi-supervised learning approach that connects unlabeled and labeled samples as nodes of a minimum-spanning tree and partitions the tree into an optimum-path forest rooted at the labeled nodes. It is suitable when most samples from a same class are more closely connected through sequences of nearby samples than samples from distinct classes, which is usually the case in data sets with a reasonable relation between number of samples and feature space dimension. The proposed solution is validated by using several data sets and state-of-the-art methods as baselines. (C) 2016 Elsevier Ltd. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fed Univ Mato Grosso UFMS, FACOM Inst Comp, Cidade Univ, BR-79070900 Campo Grande, MS, BrazilUniv Estadual Campinas, Inst Comp, Dept Informat Syst, Av Albert Einstein 1251, BR-13083852 Campinas, SP, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilCNPq: 303673/2010-9CNPq: 479070/2013-0CNPq: 302970/2014-2CNPq: 303182/2011-3CNPq: 470571/2013-6CNPq: 306166/2014-3FAPESP: 2013/20387-7FAPESP: 2014/16250-9Elsevier B.V.Universidade Federal de Mato Grosso do Sul (UFMS)Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Amorim, Willian P.Falcao, Alexandre X.Papa, Joao P. [UNESP]Carvalho, Marcelo H.2018-11-26T17:06:13Z2018-11-26T17:06:13Z2016-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article72-85application/pdfhttp://dx.doi.org/10.1016/j.patcog.2016.04.020Pattern Recognition. Oxford: Elsevier Sci Ltd, v. 60, p. 72-85, 2016.0031-3203http://hdl.handle.net/11449/16193110.1016/j.patcog.2016.04.020WOS:000383525600008WOS000383525600008.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPattern Recognition1,065info:eu-repo/semantics/openAccess2024-04-23T16:10:43Zoai:repositorio.unesp.br:11449/161931Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:34:51.271372Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Improving semi-supervised learning through optimum connectivity
title Improving semi-supervised learning through optimum connectivity
spellingShingle Improving semi-supervised learning through optimum connectivity
Amorim, Willian P.
Semi-supervised learning
Optimum-path forest classifiers
title_short Improving semi-supervised learning through optimum connectivity
title_full Improving semi-supervised learning through optimum connectivity
title_fullStr Improving semi-supervised learning through optimum connectivity
title_full_unstemmed Improving semi-supervised learning through optimum connectivity
title_sort Improving semi-supervised learning through optimum connectivity
author Amorim, Willian P.
author_facet Amorim, Willian P.
Falcao, Alexandre X.
Papa, Joao P. [UNESP]
Carvalho, Marcelo H.
author_role author
author2 Falcao, Alexandre X.
Papa, Joao P. [UNESP]
Carvalho, Marcelo H.
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de Mato Grosso do Sul (UFMS)
Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Amorim, Willian P.
Falcao, Alexandre X.
Papa, Joao P. [UNESP]
Carvalho, Marcelo H.
dc.subject.por.fl_str_mv Semi-supervised learning
Optimum-path forest classifiers
topic Semi-supervised learning
Optimum-path forest classifiers
description The annotation of large data sets by a classifier is a problem whose challenge increases as the number of labeled samples used to train the classifier reduces in comparison to the number of unlabeled samples. In this context, semi-supervised learning methods aim at discovering and labeling informative samples among the unlabeled ones, such that their addition to the correct class in the training set can improve classification performance. We present a semi-supervised learning approach that connects unlabeled and labeled samples as nodes of a minimum-spanning tree and partitions the tree into an optimum-path forest rooted at the labeled nodes. It is suitable when most samples from a same class are more closely connected through sequences of nearby samples than samples from distinct classes, which is usually the case in data sets with a reasonable relation between number of samples and feature space dimension. The proposed solution is validated by using several data sets and state-of-the-art methods as baselines. (C) 2016 Elsevier Ltd. All rights reserved.
publishDate 2016
dc.date.none.fl_str_mv 2016-12-01
2018-11-26T17:06:13Z
2018-11-26T17:06:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.patcog.2016.04.020
Pattern Recognition. Oxford: Elsevier Sci Ltd, v. 60, p. 72-85, 2016.
0031-3203
http://hdl.handle.net/11449/161931
10.1016/j.patcog.2016.04.020
WOS:000383525600008
WOS000383525600008.pdf
url http://dx.doi.org/10.1016/j.patcog.2016.04.020
http://hdl.handle.net/11449/161931
identifier_str_mv Pattern Recognition. Oxford: Elsevier Sci Ltd, v. 60, p. 72-85, 2016.
0031-3203
10.1016/j.patcog.2016.04.020
WOS:000383525600008
WOS000383525600008.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Pattern Recognition
1,065
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 72-85
application/pdf
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128381817978880