Improving semi-supervised learning through optimum connectivity
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.patcog.2016.04.020 http://hdl.handle.net/11449/161931 |
Resumo: | The annotation of large data sets by a classifier is a problem whose challenge increases as the number of labeled samples used to train the classifier reduces in comparison to the number of unlabeled samples. In this context, semi-supervised learning methods aim at discovering and labeling informative samples among the unlabeled ones, such that their addition to the correct class in the training set can improve classification performance. We present a semi-supervised learning approach that connects unlabeled and labeled samples as nodes of a minimum-spanning tree and partitions the tree into an optimum-path forest rooted at the labeled nodes. It is suitable when most samples from a same class are more closely connected through sequences of nearby samples than samples from distinct classes, which is usually the case in data sets with a reasonable relation between number of samples and feature space dimension. The proposed solution is validated by using several data sets and state-of-the-art methods as baselines. (C) 2016 Elsevier Ltd. All rights reserved. |
id |
UNSP_2d7defe936d0750f52025d1d5b33ddc4 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/161931 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Improving semi-supervised learning through optimum connectivitySemi-supervised learningOptimum-path forest classifiersThe annotation of large data sets by a classifier is a problem whose challenge increases as the number of labeled samples used to train the classifier reduces in comparison to the number of unlabeled samples. In this context, semi-supervised learning methods aim at discovering and labeling informative samples among the unlabeled ones, such that their addition to the correct class in the training set can improve classification performance. We present a semi-supervised learning approach that connects unlabeled and labeled samples as nodes of a minimum-spanning tree and partitions the tree into an optimum-path forest rooted at the labeled nodes. It is suitable when most samples from a same class are more closely connected through sequences of nearby samples than samples from distinct classes, which is usually the case in data sets with a reasonable relation between number of samples and feature space dimension. The proposed solution is validated by using several data sets and state-of-the-art methods as baselines. (C) 2016 Elsevier Ltd. All rights reserved.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fed Univ Mato Grosso UFMS, FACOM Inst Comp, Cidade Univ, BR-79070900 Campo Grande, MS, BrazilUniv Estadual Campinas, Inst Comp, Dept Informat Syst, Av Albert Einstein 1251, BR-13083852 Campinas, SP, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilCNPq: 303673/2010-9CNPq: 479070/2013-0CNPq: 302970/2014-2CNPq: 303182/2011-3CNPq: 470571/2013-6CNPq: 306166/2014-3FAPESP: 2013/20387-7FAPESP: 2014/16250-9Elsevier B.V.Universidade Federal de Mato Grosso do Sul (UFMS)Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Amorim, Willian P.Falcao, Alexandre X.Papa, Joao P. [UNESP]Carvalho, Marcelo H.2018-11-26T17:06:13Z2018-11-26T17:06:13Z2016-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article72-85application/pdfhttp://dx.doi.org/10.1016/j.patcog.2016.04.020Pattern Recognition. Oxford: Elsevier Sci Ltd, v. 60, p. 72-85, 2016.0031-3203http://hdl.handle.net/11449/16193110.1016/j.patcog.2016.04.020WOS:000383525600008WOS000383525600008.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPattern Recognition1,065info:eu-repo/semantics/openAccess2024-04-23T16:10:43Zoai:repositorio.unesp.br:11449/161931Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:34:51.271372Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Improving semi-supervised learning through optimum connectivity |
title |
Improving semi-supervised learning through optimum connectivity |
spellingShingle |
Improving semi-supervised learning through optimum connectivity Amorim, Willian P. Semi-supervised learning Optimum-path forest classifiers |
title_short |
Improving semi-supervised learning through optimum connectivity |
title_full |
Improving semi-supervised learning through optimum connectivity |
title_fullStr |
Improving semi-supervised learning through optimum connectivity |
title_full_unstemmed |
Improving semi-supervised learning through optimum connectivity |
title_sort |
Improving semi-supervised learning through optimum connectivity |
author |
Amorim, Willian P. |
author_facet |
Amorim, Willian P. Falcao, Alexandre X. Papa, Joao P. [UNESP] Carvalho, Marcelo H. |
author_role |
author |
author2 |
Falcao, Alexandre X. Papa, Joao P. [UNESP] Carvalho, Marcelo H. |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de Mato Grosso do Sul (UFMS) Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Amorim, Willian P. Falcao, Alexandre X. Papa, Joao P. [UNESP] Carvalho, Marcelo H. |
dc.subject.por.fl_str_mv |
Semi-supervised learning Optimum-path forest classifiers |
topic |
Semi-supervised learning Optimum-path forest classifiers |
description |
The annotation of large data sets by a classifier is a problem whose challenge increases as the number of labeled samples used to train the classifier reduces in comparison to the number of unlabeled samples. In this context, semi-supervised learning methods aim at discovering and labeling informative samples among the unlabeled ones, such that their addition to the correct class in the training set can improve classification performance. We present a semi-supervised learning approach that connects unlabeled and labeled samples as nodes of a minimum-spanning tree and partitions the tree into an optimum-path forest rooted at the labeled nodes. It is suitable when most samples from a same class are more closely connected through sequences of nearby samples than samples from distinct classes, which is usually the case in data sets with a reasonable relation between number of samples and feature space dimension. The proposed solution is validated by using several data sets and state-of-the-art methods as baselines. (C) 2016 Elsevier Ltd. All rights reserved. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12-01 2018-11-26T17:06:13Z 2018-11-26T17:06:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.patcog.2016.04.020 Pattern Recognition. Oxford: Elsevier Sci Ltd, v. 60, p. 72-85, 2016. 0031-3203 http://hdl.handle.net/11449/161931 10.1016/j.patcog.2016.04.020 WOS:000383525600008 WOS000383525600008.pdf |
url |
http://dx.doi.org/10.1016/j.patcog.2016.04.020 http://hdl.handle.net/11449/161931 |
identifier_str_mv |
Pattern Recognition. Oxford: Elsevier Sci Ltd, v. 60, p. 72-85, 2016. 0031-3203 10.1016/j.patcog.2016.04.020 WOS:000383525600008 WOS000383525600008.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Pattern Recognition 1,065 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
72-85 application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128381817978880 |