A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines

Detalhes bibliográficos
Autor(a) principal: Passos, Leandro Aparecido
Data de Publicação: 2020
Outros Autores: Papa, Joao Paulo [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.asoc.2019.105717
http://hdl.handle.net/11449/209831
Resumo: Deep learning techniques, such as Deep Boltzmann Machines (DBMs), have received considerable attention over the past years due to the outstanding results concerning a variable range of domains. One of the main shortcomings of these techniques involves the choice of their hyperparameters, since they have a significant impact on the final results. This work addresses the issue of fine-tuning hyperparameters of Deep Boltzmann Machines using metaheuristic optimization techniques with different backgrounds, such as swarm intelligence, memoryand evolutionary-based approaches. Experiments conducted in three public datasets for binary image reconstruction showed that metaheuristic techniques can obtain reasonable results. (C) 2019 Elsevier B.V. All rights reserved.
id UNSP_33be4a780a91794c6979e1f14358a7ac
oai_identifier_str oai:repositorio.unesp.br:11449/209831
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling A metaheuristic-driven approach to fine-tune Deep Boltzmann MachinesDeep Boltzmann MachineMeta-heuristic optimizationMachine learningDeep learning techniques, such as Deep Boltzmann Machines (DBMs), have received considerable attention over the past years due to the outstanding results concerning a variable range of domains. One of the main shortcomings of these techniques involves the choice of their hyperparameters, since they have a significant impact on the final results. This work addresses the issue of fine-tuning hyperparameters of Deep Boltzmann Machines using metaheuristic optimization techniques with different backgrounds, such as swarm intelligence, memoryand evolutionary-based approaches. Experiments conducted in three public datasets for binary image reconstruction showed that metaheuristic techniques can obtain reasonable results. (C) 2019 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Fed Sao Carlos, Dept Comp, Rod Washington Luis,Km 235, BR-13565905 Sao Carlos, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilFAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2016/19403-6CNPq: 306166/2014-3CNPq: 307066/2017-7FUNDUNESP: 2597.2017CAPES: 001Elsevier B.V.Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Passos, Leandro AparecidoPapa, Joao Paulo [UNESP]2021-06-25T12:30:44Z2021-06-25T12:30:44Z2020-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12http://dx.doi.org/10.1016/j.asoc.2019.105717Applied Soft Computing. Amsterdam: Elsevier, v. 97, 12 p., 2020.1568-4946http://hdl.handle.net/11449/20983110.1016/j.asoc.2019.105717WOS:000603367700004Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Soft Computinginfo:eu-repo/semantics/openAccess2024-04-23T16:11:00Zoai:repositorio.unesp.br:11449/209831Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:12:39.914283Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines
title A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines
spellingShingle A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines
Passos, Leandro Aparecido
Deep Boltzmann Machine
Meta-heuristic optimization
Machine learning
title_short A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines
title_full A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines
title_fullStr A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines
title_full_unstemmed A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines
title_sort A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines
author Passos, Leandro Aparecido
author_facet Passos, Leandro Aparecido
Papa, Joao Paulo [UNESP]
author_role author
author2 Papa, Joao Paulo [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Passos, Leandro Aparecido
Papa, Joao Paulo [UNESP]
dc.subject.por.fl_str_mv Deep Boltzmann Machine
Meta-heuristic optimization
Machine learning
topic Deep Boltzmann Machine
Meta-heuristic optimization
Machine learning
description Deep learning techniques, such as Deep Boltzmann Machines (DBMs), have received considerable attention over the past years due to the outstanding results concerning a variable range of domains. One of the main shortcomings of these techniques involves the choice of their hyperparameters, since they have a significant impact on the final results. This work addresses the issue of fine-tuning hyperparameters of Deep Boltzmann Machines using metaheuristic optimization techniques with different backgrounds, such as swarm intelligence, memoryand evolutionary-based approaches. Experiments conducted in three public datasets for binary image reconstruction showed that metaheuristic techniques can obtain reasonable results. (C) 2019 Elsevier B.V. All rights reserved.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-01
2021-06-25T12:30:44Z
2021-06-25T12:30:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.asoc.2019.105717
Applied Soft Computing. Amsterdam: Elsevier, v. 97, 12 p., 2020.
1568-4946
http://hdl.handle.net/11449/209831
10.1016/j.asoc.2019.105717
WOS:000603367700004
url http://dx.doi.org/10.1016/j.asoc.2019.105717
http://hdl.handle.net/11449/209831
identifier_str_mv Applied Soft Computing. Amsterdam: Elsevier, v. 97, 12 p., 2020.
1568-4946
10.1016/j.asoc.2019.105717
WOS:000603367700004
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Applied Soft Computing
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 12
dc.publisher.none.fl_str_mv Elsevier B.V.
publisher.none.fl_str_mv Elsevier B.V.
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129171570819072