A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.asoc.2019.105717 http://hdl.handle.net/11449/209831 |
Resumo: | Deep learning techniques, such as Deep Boltzmann Machines (DBMs), have received considerable attention over the past years due to the outstanding results concerning a variable range of domains. One of the main shortcomings of these techniques involves the choice of their hyperparameters, since they have a significant impact on the final results. This work addresses the issue of fine-tuning hyperparameters of Deep Boltzmann Machines using metaheuristic optimization techniques with different backgrounds, such as swarm intelligence, memoryand evolutionary-based approaches. Experiments conducted in three public datasets for binary image reconstruction showed that metaheuristic techniques can obtain reasonable results. (C) 2019 Elsevier B.V. All rights reserved. |
id |
UNSP_33be4a780a91794c6979e1f14358a7ac |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/209831 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
A metaheuristic-driven approach to fine-tune Deep Boltzmann MachinesDeep Boltzmann MachineMeta-heuristic optimizationMachine learningDeep learning techniques, such as Deep Boltzmann Machines (DBMs), have received considerable attention over the past years due to the outstanding results concerning a variable range of domains. One of the main shortcomings of these techniques involves the choice of their hyperparameters, since they have a significant impact on the final results. This work addresses the issue of fine-tuning hyperparameters of Deep Boltzmann Machines using metaheuristic optimization techniques with different backgrounds, such as swarm intelligence, memoryand evolutionary-based approaches. Experiments conducted in three public datasets for binary image reconstruction showed that metaheuristic techniques can obtain reasonable results. (C) 2019 Elsevier B.V. All rights reserved.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação para o Desenvolvimento da UNESP (FUNDUNESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Univ Fed Sao Carlos, Dept Comp, Rod Washington Luis,Km 235, BR-13565905 Sao Carlos, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilSao Paulo State Univ, Dept Comp, Av Eng Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilFAPESP: 2013/07375-0FAPESP: 2014/12236-1FAPESP: 2016/19403-6CNPq: 306166/2014-3CNPq: 307066/2017-7FUNDUNESP: 2597.2017CAPES: 001Elsevier B.V.Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Passos, Leandro AparecidoPapa, Joao Paulo [UNESP]2021-06-25T12:30:44Z2021-06-25T12:30:44Z2020-12-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12http://dx.doi.org/10.1016/j.asoc.2019.105717Applied Soft Computing. Amsterdam: Elsevier, v. 97, 12 p., 2020.1568-4946http://hdl.handle.net/11449/20983110.1016/j.asoc.2019.105717WOS:000603367700004Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengApplied Soft Computinginfo:eu-repo/semantics/openAccess2024-04-23T16:11:00Zoai:repositorio.unesp.br:11449/209831Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:12:39.914283Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines |
title |
A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines |
spellingShingle |
A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines Passos, Leandro Aparecido Deep Boltzmann Machine Meta-heuristic optimization Machine learning |
title_short |
A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines |
title_full |
A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines |
title_fullStr |
A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines |
title_full_unstemmed |
A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines |
title_sort |
A metaheuristic-driven approach to fine-tune Deep Boltzmann Machines |
author |
Passos, Leandro Aparecido |
author_facet |
Passos, Leandro Aparecido Papa, Joao Paulo [UNESP] |
author_role |
author |
author2 |
Papa, Joao Paulo [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Passos, Leandro Aparecido Papa, Joao Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Deep Boltzmann Machine Meta-heuristic optimization Machine learning |
topic |
Deep Boltzmann Machine Meta-heuristic optimization Machine learning |
description |
Deep learning techniques, such as Deep Boltzmann Machines (DBMs), have received considerable attention over the past years due to the outstanding results concerning a variable range of domains. One of the main shortcomings of these techniques involves the choice of their hyperparameters, since they have a significant impact on the final results. This work addresses the issue of fine-tuning hyperparameters of Deep Boltzmann Machines using metaheuristic optimization techniques with different backgrounds, such as swarm intelligence, memoryand evolutionary-based approaches. Experiments conducted in three public datasets for binary image reconstruction showed that metaheuristic techniques can obtain reasonable results. (C) 2019 Elsevier B.V. All rights reserved. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-01 2021-06-25T12:30:44Z 2021-06-25T12:30:44Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.asoc.2019.105717 Applied Soft Computing. Amsterdam: Elsevier, v. 97, 12 p., 2020. 1568-4946 http://hdl.handle.net/11449/209831 10.1016/j.asoc.2019.105717 WOS:000603367700004 |
url |
http://dx.doi.org/10.1016/j.asoc.2019.105717 http://hdl.handle.net/11449/209831 |
identifier_str_mv |
Applied Soft Computing. Amsterdam: Elsevier, v. 97, 12 p., 2020. 1568-4946 10.1016/j.asoc.2019.105717 WOS:000603367700004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Applied Soft Computing |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
12 |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129171570819072 |