Dynamics in dumbbell domains III. Continuity of attractors
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.jde.2008.12.014 http://hdl.handle.net/11449/42494 |
Resumo: | In this paper we conclude the analysis started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597] and continued in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)] concerning the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain as the channel shrinks to a line segment. In [J.M. Arrieta, AN Carvalho. G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597], we have established an appropriate functional analytic framework to address this problem and we have shown the continuity of the set of equilibria. In [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz. Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)], we have analyzed the behavior of the limiting problem. In this paper we show that the attractors are Upper semicontinuous and, moreover, if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous and therefore, continuous. The continuity is obtained in L(p) and H(1) norms. (C) 2008 Elsevier B.V. All rights reserved. |
id |
UNSP_361ae65d559a74a15e68cff700bae7ba |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/42494 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Dynamics in dumbbell domains III. Continuity of attractorsIn this paper we conclude the analysis started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597] and continued in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)] concerning the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain as the channel shrinks to a line segment. In [J.M. Arrieta, AN Carvalho. G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597], we have established an appropriate functional analytic framework to address this problem and we have shown the continuity of the set of equilibria. In [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz. Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)], we have analyzed the behavior of the limiting problem. In this paper we show that the attractors are Upper semicontinuous and, moreover, if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous and therefore, continuous. The continuity is obtained in L(p) and H(1) norms. (C) 2008 Elsevier B.V. All rights reserved.MECPrograma de Financiacion de Grupos de Investigacion UCM-Comunidad de MadridSIMUMAT-Comunidad de Madrid, SpainConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Complutense Madrid, Dept Matemat Aplicada, Fac Matemat, E-28040 Madrid, SpainUniv São Paulo, Dept Matemat, Inst Ciencias Matemat & Computacao, BR-13560970 São Carlos, SP, BrazilUniv Estadual Paulista, Dept Matemat, IBILCE, UNESP, BR-15054000 Sao Jose Dos Campos, BrazilUniv Estadual Paulista, Dept Matemat, IBILCE, UNESP, BR-15054000 Sao Jose Dos Campos, BrazilMEC: PHB2006-003-PCMEC: MTM2006-08262Programa de Financiacion de Grupos de Investigacion UCM-Comunidad de Madrid: CCG07-UCM/ESP-2393Programa de Financiacion de Grupos de Investigacion UCM-Comunidad de Madrid: 920894CNPq: 305447/2005-0CNPq: 451761/2008-1CAPES: 267/2008FAPESP: 08/53094-4FAPESP: 06/04781-3FAPESP: 07/100981-0Academic Press Inc. Elsevier B.V.Univ Complutense MadridUniversidade de São Paulo (USP)Universidade Estadual Paulista (Unesp)Arrieta, Jose M.Carvalho, Alexandre N.Lozada-Cruz, German Jesus [UNESP]2014-05-20T15:34:18Z2014-05-20T15:34:18Z2009-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article225-259application/pdfhttp://dx.doi.org/10.1016/j.jde.2008.12.014Journal of Differential Equations. San Diego: Academic Press Inc. Elsevier B.V., v. 247, n. 1, p. 225-259, 2009.0022-0396http://hdl.handle.net/11449/4249410.1016/j.jde.2008.12.014WOS:000266256900010WOS000266256900010.pdf9125376680065204Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Differential Equations1.7822,525info:eu-repo/semantics/openAccess2023-11-12T06:14:08Zoai:repositorio.unesp.br:11449/42494Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:30:38.240375Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Dynamics in dumbbell domains III. Continuity of attractors |
title |
Dynamics in dumbbell domains III. Continuity of attractors |
spellingShingle |
Dynamics in dumbbell domains III. Continuity of attractors Arrieta, Jose M. |
title_short |
Dynamics in dumbbell domains III. Continuity of attractors |
title_full |
Dynamics in dumbbell domains III. Continuity of attractors |
title_fullStr |
Dynamics in dumbbell domains III. Continuity of attractors |
title_full_unstemmed |
Dynamics in dumbbell domains III. Continuity of attractors |
title_sort |
Dynamics in dumbbell domains III. Continuity of attractors |
author |
Arrieta, Jose M. |
author_facet |
Arrieta, Jose M. Carvalho, Alexandre N. Lozada-Cruz, German Jesus [UNESP] |
author_role |
author |
author2 |
Carvalho, Alexandre N. Lozada-Cruz, German Jesus [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Univ Complutense Madrid Universidade de São Paulo (USP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Arrieta, Jose M. Carvalho, Alexandre N. Lozada-Cruz, German Jesus [UNESP] |
description |
In this paper we conclude the analysis started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597] and continued in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)] concerning the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain as the channel shrinks to a line segment. In [J.M. Arrieta, AN Carvalho. G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597], we have established an appropriate functional analytic framework to address this problem and we have shown the continuity of the set of equilibria. In [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz. Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)], we have analyzed the behavior of the limiting problem. In this paper we show that the attractors are Upper semicontinuous and, moreover, if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous and therefore, continuous. The continuity is obtained in L(p) and H(1) norms. (C) 2008 Elsevier B.V. All rights reserved. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-07-01 2014-05-20T15:34:18Z 2014-05-20T15:34:18Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.jde.2008.12.014 Journal of Differential Equations. San Diego: Academic Press Inc. Elsevier B.V., v. 247, n. 1, p. 225-259, 2009. 0022-0396 http://hdl.handle.net/11449/42494 10.1016/j.jde.2008.12.014 WOS:000266256900010 WOS000266256900010.pdf 9125376680065204 |
url |
http://dx.doi.org/10.1016/j.jde.2008.12.014 http://hdl.handle.net/11449/42494 |
identifier_str_mv |
Journal of Differential Equations. San Diego: Academic Press Inc. Elsevier B.V., v. 247, n. 1, p. 225-259, 2009. 0022-0396 10.1016/j.jde.2008.12.014 WOS:000266256900010 WOS000266256900010.pdf 9125376680065204 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Differential Equations 1.782 2,525 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
225-259 application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc. Elsevier B.V. |
publisher.none.fl_str_mv |
Academic Press Inc. Elsevier B.V. |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128818847678464 |