Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/SIBGRAPI.2017.23 http://hdl.handle.net/11449/163865 |
Resumo: | Multi-objective optimization plays an important role when one has fitness functions that are somehow conflicting with each other. Also, parameter-dependent machine learning techniques can benefit from such optimization tools. In this paper, we propose a multi-objective-based strategy approach to build compact though representative training sets for Optimum-Path Forest (OPF) learning purposes. Although OPF pruning can provide such a nice representation, it comes with the price of being parameter-dependent. The proposed approach cope with that problem by avoiding the classifier to be hand-tuned by modeling the task of parameter learning as a multi-objective-oriented optimization problem, which can be less prone to errors. Experiments on public datasets show the robustness of the proposed approach, which is now parameterless and userfriendly. |
id |
UNSP_3e6598b2fcc468e77254838a5b6cd4a2 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/163865 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Pruning Optimum-Path Forest Classifiers Using Multi-Objective OptimizationMulti-objective optimization plays an important role when one has fitness functions that are somehow conflicting with each other. Also, parameter-dependent machine learning techniques can benefit from such optimization tools. In this paper, we propose a multi-objective-based strategy approach to build compact though representative training sets for Optimum-Path Forest (OPF) learning purposes. Although OPF pruning can provide such a nice representation, it comes with the price of being parameter-dependent. The proposed approach cope with that problem by avoiding the classifier to be hand-tuned by modeling the task of parameter learning as a multi-objective-oriented optimization problem, which can be less prone to errors. Experiments on public datasets show the robustness of the proposed approach, which is now parameterless and userfriendly.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilSao Paulo State Univ, Dept Elect Engn, Bauru, BrazilSao Paulo State Univ, Dept Comp, Bauru, BrazilSao Paulo State Univ, Dept Elect Engn, Bauru, BrazilSao Paulo State Univ, Dept Comp, Bauru, BrazilFAPESP: 2014/12236-1FAPESP: 2016/19403-6CNPq: 306166/2014-3IeeeUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Rodrigues, DouglasSouza, Andre Nunes [UNESP]Papa, Joao Paulo [UNESP]IEEE2018-11-26T17:48:13Z2018-11-26T17:48:13Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject127-133http://dx.doi.org/10.1109/SIBGRAPI.2017.232017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 127-133, 2017.1530-1834http://hdl.handle.net/11449/16386510.1109/SIBGRAPI.2017.23WOS:000425243500017Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)info:eu-repo/semantics/openAccess2024-06-28T13:34:36Zoai:repositorio.unesp.br:11449/163865Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:35:10.290735Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization |
title |
Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization |
spellingShingle |
Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization Rodrigues, Douglas |
title_short |
Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization |
title_full |
Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization |
title_fullStr |
Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization |
title_full_unstemmed |
Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization |
title_sort |
Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization |
author |
Rodrigues, Douglas |
author_facet |
Rodrigues, Douglas Souza, Andre Nunes [UNESP] Papa, Joao Paulo [UNESP] IEEE |
author_role |
author |
author2 |
Souza, Andre Nunes [UNESP] Papa, Joao Paulo [UNESP] IEEE |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Rodrigues, Douglas Souza, Andre Nunes [UNESP] Papa, Joao Paulo [UNESP] IEEE |
description |
Multi-objective optimization plays an important role when one has fitness functions that are somehow conflicting with each other. Also, parameter-dependent machine learning techniques can benefit from such optimization tools. In this paper, we propose a multi-objective-based strategy approach to build compact though representative training sets for Optimum-Path Forest (OPF) learning purposes. Although OPF pruning can provide such a nice representation, it comes with the price of being parameter-dependent. The proposed approach cope with that problem by avoiding the classifier to be hand-tuned by modeling the task of parameter learning as a multi-objective-oriented optimization problem, which can be less prone to errors. Experiments on public datasets show the robustness of the proposed approach, which is now parameterless and userfriendly. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 2018-11-26T17:48:13Z 2018-11-26T17:48:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/SIBGRAPI.2017.23 2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 127-133, 2017. 1530-1834 http://hdl.handle.net/11449/163865 10.1109/SIBGRAPI.2017.23 WOS:000425243500017 |
url |
http://dx.doi.org/10.1109/SIBGRAPI.2017.23 http://hdl.handle.net/11449/163865 |
identifier_str_mv |
2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 127-133, 2017. 1530-1834 10.1109/SIBGRAPI.2017.23 WOS:000425243500017 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
127-133 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128952285265920 |