Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Douglas
Data de Publicação: 2017
Outros Autores: Souza, Andre Nunes [UNESP], Papa, Joao Paulo [UNESP], IEEE
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/SIBGRAPI.2017.23
http://hdl.handle.net/11449/163865
Resumo: Multi-objective optimization plays an important role when one has fitness functions that are somehow conflicting with each other. Also, parameter-dependent machine learning techniques can benefit from such optimization tools. In this paper, we propose a multi-objective-based strategy approach to build compact though representative training sets for Optimum-Path Forest (OPF) learning purposes. Although OPF pruning can provide such a nice representation, it comes with the price of being parameter-dependent. The proposed approach cope with that problem by avoiding the classifier to be hand-tuned by modeling the task of parameter learning as a multi-objective-oriented optimization problem, which can be less prone to errors. Experiments on public datasets show the robustness of the proposed approach, which is now parameterless and userfriendly.
id UNSP_3e6598b2fcc468e77254838a5b6cd4a2
oai_identifier_str oai:repositorio.unesp.br:11449/163865
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Pruning Optimum-Path Forest Classifiers Using Multi-Objective OptimizationMulti-objective optimization plays an important role when one has fitness functions that are somehow conflicting with each other. Also, parameter-dependent machine learning techniques can benefit from such optimization tools. In this paper, we propose a multi-objective-based strategy approach to build compact though representative training sets for Optimum-Path Forest (OPF) learning purposes. Although OPF pruning can provide such a nice representation, it comes with the price of being parameter-dependent. The proposed approach cope with that problem by avoiding the classifier to be hand-tuned by modeling the task of parameter learning as a multi-objective-oriented optimization problem, which can be less prone to errors. Experiments on public datasets show the robustness of the proposed approach, which is now parameterless and userfriendly.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilSao Paulo State Univ, Dept Elect Engn, Bauru, BrazilSao Paulo State Univ, Dept Comp, Bauru, BrazilSao Paulo State Univ, Dept Elect Engn, Bauru, BrazilSao Paulo State Univ, Dept Comp, Bauru, BrazilFAPESP: 2014/12236-1FAPESP: 2016/19403-6CNPq: 306166/2014-3IeeeUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Rodrigues, DouglasSouza, Andre Nunes [UNESP]Papa, Joao Paulo [UNESP]IEEE2018-11-26T17:48:13Z2018-11-26T17:48:13Z2017-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject127-133http://dx.doi.org/10.1109/SIBGRAPI.2017.232017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 127-133, 2017.1530-1834http://hdl.handle.net/11449/16386510.1109/SIBGRAPI.2017.23WOS:000425243500017Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)info:eu-repo/semantics/openAccess2024-06-28T13:34:36Zoai:repositorio.unesp.br:11449/163865Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T18:35:10.290735Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization
title Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization
spellingShingle Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization
Rodrigues, Douglas
title_short Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization
title_full Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization
title_fullStr Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization
title_full_unstemmed Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization
title_sort Pruning Optimum-Path Forest Classifiers Using Multi-Objective Optimization
author Rodrigues, Douglas
author_facet Rodrigues, Douglas
Souza, Andre Nunes [UNESP]
Papa, Joao Paulo [UNESP]
IEEE
author_role author
author2 Souza, Andre Nunes [UNESP]
Papa, Joao Paulo [UNESP]
IEEE
author2_role author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Rodrigues, Douglas
Souza, Andre Nunes [UNESP]
Papa, Joao Paulo [UNESP]
IEEE
description Multi-objective optimization plays an important role when one has fitness functions that are somehow conflicting with each other. Also, parameter-dependent machine learning techniques can benefit from such optimization tools. In this paper, we propose a multi-objective-based strategy approach to build compact though representative training sets for Optimum-Path Forest (OPF) learning purposes. Although OPF pruning can provide such a nice representation, it comes with the price of being parameter-dependent. The proposed approach cope with that problem by avoiding the classifier to be hand-tuned by modeling the task of parameter learning as a multi-objective-oriented optimization problem, which can be less prone to errors. Experiments on public datasets show the robustness of the proposed approach, which is now parameterless and userfriendly.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
2018-11-26T17:48:13Z
2018-11-26T17:48:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/SIBGRAPI.2017.23
2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 127-133, 2017.
1530-1834
http://hdl.handle.net/11449/163865
10.1109/SIBGRAPI.2017.23
WOS:000425243500017
url http://dx.doi.org/10.1109/SIBGRAPI.2017.23
http://hdl.handle.net/11449/163865
identifier_str_mv 2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 127-133, 2017.
1530-1834
10.1109/SIBGRAPI.2017.23
WOS:000425243500017
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2017 30th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 127-133
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128952285265920