How to proper initialize Gaussian Mixture Models with Optimum-Path Forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/SIBGRAPI55357.2022.9991796 http://hdl.handle.net/11449/248222 |
Resumo: | In this paper, we proposed a fast and scalable unsupervised Optimum-Path Forest for improving the initialization of Gaussian mixture models. Taking advantage of Optimum-Path Forest attributes such as on-the-fly number of clusters estimation and its intrinsic non-parametric nature, we exploited the k Approximate Nearest Neighbors graph to build its adjacency relation, enabling it not only to initialize the Expectation-Maximization algorithm but to be employed for clustering on large datasets as well. From experiments conducted on eight datasets, the results indicated the proposed approach is able to encode Gaussian parameters more naturally and intuitively compared to other clustering algorithms such as $k -$means. Furthermore, the proposed approach has shown great scalability, making it a viable alternative to traditional Optimum-Path Forest clustering |
id |
UNSP_44b5162e390017e99dd96d2465e53426 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/248222 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
How to proper initialize Gaussian Mixture Models with Optimum-Path ForestIn this paper, we proposed a fast and scalable unsupervised Optimum-Path Forest for improving the initialization of Gaussian mixture models. Taking advantage of Optimum-Path Forest attributes such as on-the-fly number of clusters estimation and its intrinsic non-parametric nature, we exploited the k Approximate Nearest Neighbors graph to build its adjacency relation, enabling it not only to initialize the Expectation-Maximization algorithm but to be employed for clustering on large datasets as well. From experiments conducted on eight datasets, the results indicated the proposed approach is able to encode Gaussian parameters more naturally and intuitively compared to other clustering algorithms such as $k -$means. Furthermore, the proposed approach has shown great scalability, making it a viable alternative to traditional Optimum-Path Forest clusteringFederal University of São Carlos - UFSCar São Carlos Department of Computing, S˜ao CarlosSão Paulo State University - Unesp Bauru Department of Computing, BauruSão Paulo State University - Unesp Bauru Department of Computing, BauruUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (UNESP)Martins, Guilherme BrandaoPapa, Joao Paulo [UNESP]2023-07-29T13:37:54Z2023-07-29T13:37:54Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject127-132http://dx.doi.org/10.1109/SIBGRAPI55357.2022.9991796Proceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022, p. 127-132.http://hdl.handle.net/11449/24822210.1109/SIBGRAPI55357.2022.99917962-s2.0-85146435637Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/248222Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:50:29.620480Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
How to proper initialize Gaussian Mixture Models with Optimum-Path Forest |
title |
How to proper initialize Gaussian Mixture Models with Optimum-Path Forest |
spellingShingle |
How to proper initialize Gaussian Mixture Models with Optimum-Path Forest Martins, Guilherme Brandao |
title_short |
How to proper initialize Gaussian Mixture Models with Optimum-Path Forest |
title_full |
How to proper initialize Gaussian Mixture Models with Optimum-Path Forest |
title_fullStr |
How to proper initialize Gaussian Mixture Models with Optimum-Path Forest |
title_full_unstemmed |
How to proper initialize Gaussian Mixture Models with Optimum-Path Forest |
title_sort |
How to proper initialize Gaussian Mixture Models with Optimum-Path Forest |
author |
Martins, Guilherme Brandao |
author_facet |
Martins, Guilherme Brandao Papa, Joao Paulo [UNESP] |
author_role |
author |
author2 |
Papa, Joao Paulo [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Martins, Guilherme Brandao Papa, Joao Paulo [UNESP] |
description |
In this paper, we proposed a fast and scalable unsupervised Optimum-Path Forest for improving the initialization of Gaussian mixture models. Taking advantage of Optimum-Path Forest attributes such as on-the-fly number of clusters estimation and its intrinsic non-parametric nature, we exploited the k Approximate Nearest Neighbors graph to build its adjacency relation, enabling it not only to initialize the Expectation-Maximization algorithm but to be employed for clustering on large datasets as well. From experiments conducted on eight datasets, the results indicated the proposed approach is able to encode Gaussian parameters more naturally and intuitively compared to other clustering algorithms such as $k -$means. Furthermore, the proposed approach has shown great scalability, making it a viable alternative to traditional Optimum-Path Forest clustering |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 2023-07-29T13:37:54Z 2023-07-29T13:37:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/SIBGRAPI55357.2022.9991796 Proceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022, p. 127-132. http://hdl.handle.net/11449/248222 10.1109/SIBGRAPI55357.2022.9991796 2-s2.0-85146435637 |
url |
http://dx.doi.org/10.1109/SIBGRAPI55357.2022.9991796 http://hdl.handle.net/11449/248222 |
identifier_str_mv |
Proceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022, p. 127-132. 10.1109/SIBGRAPI55357.2022.9991796 2-s2.0-85146435637 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
127-132 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128708828987392 |