How to proper initialize Gaussian Mixture Models with Optimum-Path Forest

Detalhes bibliográficos
Autor(a) principal: Martins, Guilherme Brandao
Data de Publicação: 2022
Outros Autores: Papa, Joao Paulo [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/SIBGRAPI55357.2022.9991796
http://hdl.handle.net/11449/248222
Resumo: In this paper, we proposed a fast and scalable unsupervised Optimum-Path Forest for improving the initialization of Gaussian mixture models. Taking advantage of Optimum-Path Forest attributes such as on-the-fly number of clusters estimation and its intrinsic non-parametric nature, we exploited the k Approximate Nearest Neighbors graph to build its adjacency relation, enabling it not only to initialize the Expectation-Maximization algorithm but to be employed for clustering on large datasets as well. From experiments conducted on eight datasets, the results indicated the proposed approach is able to encode Gaussian parameters more naturally and intuitively compared to other clustering algorithms such as $k -$means. Furthermore, the proposed approach has shown great scalability, making it a viable alternative to traditional Optimum-Path Forest clustering
id UNSP_44b5162e390017e99dd96d2465e53426
oai_identifier_str oai:repositorio.unesp.br:11449/248222
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling How to proper initialize Gaussian Mixture Models with Optimum-Path ForestIn this paper, we proposed a fast and scalable unsupervised Optimum-Path Forest for improving the initialization of Gaussian mixture models. Taking advantage of Optimum-Path Forest attributes such as on-the-fly number of clusters estimation and its intrinsic non-parametric nature, we exploited the k Approximate Nearest Neighbors graph to build its adjacency relation, enabling it not only to initialize the Expectation-Maximization algorithm but to be employed for clustering on large datasets as well. From experiments conducted on eight datasets, the results indicated the proposed approach is able to encode Gaussian parameters more naturally and intuitively compared to other clustering algorithms such as $k -$means. Furthermore, the proposed approach has shown great scalability, making it a viable alternative to traditional Optimum-Path Forest clusteringFederal University of São Carlos - UFSCar São Carlos Department of Computing, S˜ao CarlosSão Paulo State University - Unesp Bauru Department of Computing, BauruSão Paulo State University - Unesp Bauru Department of Computing, BauruUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (UNESP)Martins, Guilherme BrandaoPapa, Joao Paulo [UNESP]2023-07-29T13:37:54Z2023-07-29T13:37:54Z2022-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject127-132http://dx.doi.org/10.1109/SIBGRAPI55357.2022.9991796Proceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022, p. 127-132.http://hdl.handle.net/11449/24822210.1109/SIBGRAPI55357.2022.99917962-s2.0-85146435637Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/248222Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:50:29.620480Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv How to proper initialize Gaussian Mixture Models with Optimum-Path Forest
title How to proper initialize Gaussian Mixture Models with Optimum-Path Forest
spellingShingle How to proper initialize Gaussian Mixture Models with Optimum-Path Forest
Martins, Guilherme Brandao
title_short How to proper initialize Gaussian Mixture Models with Optimum-Path Forest
title_full How to proper initialize Gaussian Mixture Models with Optimum-Path Forest
title_fullStr How to proper initialize Gaussian Mixture Models with Optimum-Path Forest
title_full_unstemmed How to proper initialize Gaussian Mixture Models with Optimum-Path Forest
title_sort How to proper initialize Gaussian Mixture Models with Optimum-Path Forest
author Martins, Guilherme Brandao
author_facet Martins, Guilherme Brandao
Papa, Joao Paulo [UNESP]
author_role author
author2 Papa, Joao Paulo [UNESP]
author2_role author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (UNESP)
dc.contributor.author.fl_str_mv Martins, Guilherme Brandao
Papa, Joao Paulo [UNESP]
description In this paper, we proposed a fast and scalable unsupervised Optimum-Path Forest for improving the initialization of Gaussian mixture models. Taking advantage of Optimum-Path Forest attributes such as on-the-fly number of clusters estimation and its intrinsic non-parametric nature, we exploited the k Approximate Nearest Neighbors graph to build its adjacency relation, enabling it not only to initialize the Expectation-Maximization algorithm but to be employed for clustering on large datasets as well. From experiments conducted on eight datasets, the results indicated the proposed approach is able to encode Gaussian parameters more naturally and intuitively compared to other clustering algorithms such as $k -$means. Furthermore, the proposed approach has shown great scalability, making it a viable alternative to traditional Optimum-Path Forest clustering
publishDate 2022
dc.date.none.fl_str_mv 2022-01-01
2023-07-29T13:37:54Z
2023-07-29T13:37:54Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/SIBGRAPI55357.2022.9991796
Proceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022, p. 127-132.
http://hdl.handle.net/11449/248222
10.1109/SIBGRAPI55357.2022.9991796
2-s2.0-85146435637
url http://dx.doi.org/10.1109/SIBGRAPI55357.2022.9991796
http://hdl.handle.net/11449/248222
identifier_str_mv Proceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022, p. 127-132.
10.1109/SIBGRAPI55357.2022.9991796
2-s2.0-85146435637
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings - 2022 35th Conference on Graphics, Patterns, and Images, SIBGRAPI 2022
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 127-132
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128708828987392