A nova família de distribuições odd log-logística: teoria e aplicações
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da USP |
Texto Completo: | http://www.teses.usp.br/teses/disponiveis/11/11134/tde-03052016-183138/ |
Resumo: | Neste trabalho, foi proposta uma nova família de distribuições, a qual permite modelar dados de sobrevivência quando a função de risco tem formas unimodal e U (banheira). Ainda, foram consideradas as modificações das distribuições Weibull, Fréchet, half-normal generalizada, log-logística e lognormal. Tomando dados não-censurados e censurados, considerou-se os estimadores de máxima verossimilhança para o modelo proposto, a fim de verificar a flexibilidade da nova família. Além disso, um modelo de regressão locação-escala foi utilizado para verificar a influência de covariáveis nos tempos de sobrevida. Adicionalmente, conduziu-se uma análise de resíduos baseada nos resíduos deviance modificada. Estudos de simulação, utilizando-se de diferentes atribuições dos parâmetros, porcentagens de censura e tamanhos amostrais, foram conduzidos com o objetivo de verificar a distribuição empírica dos resíduos tipo martingale e deviance modificada. Para detectar observações influentes, foram utilizadas medidas de influência local, que são medidas de diagnóstico baseadas em pequenas perturbações nos dados ou no modelo proposto. Podem ocorrer situações em que a suposição de independência entre os tempos de falha e censura não seja válida. Assim, outro objetivo desse trabalho é considerar o mecanismo de censura informativa, baseado na verossimilhança marginal, considerando a distribuição log-odd log-logística Weibull na modelagem. Por fim, as metodologias descritas são aplicadas a conjuntos de dados reais. |
id |
USP_24dd60e490c7fa6053869d9d17c63aab |
---|---|
oai_identifier_str |
oai:teses.usp.br:tde-03052016-183138 |
network_acronym_str |
USP |
network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
repository_id_str |
2721 |
spelling |
A nova família de distribuições odd log-logística: teoria e aplicaçõesThe new family of odd log-logistic distributions: theory and applicationsCensored dataCensura informativaDistribuição odd log-logística FréchetDistribuição odd log-logística half-normal generalizadaDistribuição odd log-logística WeibullDistributions (probability)Envelope simuladoEstatíistica de ordemLikelihoodModelo de regressão log-odd log-logístico WeibullMomentosRegression analysis and correlationSurvival analysisNeste trabalho, foi proposta uma nova família de distribuições, a qual permite modelar dados de sobrevivência quando a função de risco tem formas unimodal e U (banheira). Ainda, foram consideradas as modificações das distribuições Weibull, Fréchet, half-normal generalizada, log-logística e lognormal. Tomando dados não-censurados e censurados, considerou-se os estimadores de máxima verossimilhança para o modelo proposto, a fim de verificar a flexibilidade da nova família. Além disso, um modelo de regressão locação-escala foi utilizado para verificar a influência de covariáveis nos tempos de sobrevida. Adicionalmente, conduziu-se uma análise de resíduos baseada nos resíduos deviance modificada. Estudos de simulação, utilizando-se de diferentes atribuições dos parâmetros, porcentagens de censura e tamanhos amostrais, foram conduzidos com o objetivo de verificar a distribuição empírica dos resíduos tipo martingale e deviance modificada. Para detectar observações influentes, foram utilizadas medidas de influência local, que são medidas de diagnóstico baseadas em pequenas perturbações nos dados ou no modelo proposto. Podem ocorrer situações em que a suposição de independência entre os tempos de falha e censura não seja válida. Assim, outro objetivo desse trabalho é considerar o mecanismo de censura informativa, baseado na verossimilhança marginal, considerando a distribuição log-odd log-logística Weibull na modelagem. Por fim, as metodologias descritas são aplicadas a conjuntos de dados reais.In this study, a new family of distributions was proposed, which allows to model survival data when the function of risk has unimodal shapes and U (bathtub). Modifications of the Weibull, Fréchet, generalized half-normal, log-logistic and lognormal distributions were considered. Taking censored and non-censored data, we consider the maximum likelihood estimators for the proposed model, in order to check the flexibility of the new family. Also, it was considered a location-scale regression model, to verify the influence of covariates on survival times. Additionally, a residual analysis was conducted based on modified deviance residuals. For different parameters fixed, percentages of censoring and sample sizes, several simulation studies were performed with the objective of verify the empirical distribution of the martingale type and modified deviance residuals. To detect influential observations, measures of local influence were used, which are diagnostic measures based on small perturbations in the data or in the proposed model. It can occur situations in which the assumption of independence between the failure and censoring times is not valid. Thus, another objective of this work is to consider the informative censoring mechanism based on the marginal likelihood, considering the log-odd log-logistic Weibull distribution in modelling. Finally, the methodologies described are applied to sets of real data.Biblioteca Digitais de Teses e Dissertações da USPOrtega, Edwin Moises MarcosCruz, José Nilton da2016-02-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://www.teses.usp.br/teses/disponiveis/11/11134/tde-03052016-183138/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesspor2017-09-04T21:06:18Zoai:teses.usp.br:tde-03052016-183138Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212017-09-04T21:06:18Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
dc.title.none.fl_str_mv |
A nova família de distribuições odd log-logística: teoria e aplicações The new family of odd log-logistic distributions: theory and applications |
title |
A nova família de distribuições odd log-logística: teoria e aplicações |
spellingShingle |
A nova família de distribuições odd log-logística: teoria e aplicações Cruz, José Nilton da Censored data Censura informativa Distribuição odd log-logística Fréchet Distribuição odd log-logística half-normal generalizada Distribuição odd log-logística Weibull Distributions (probability) Envelope simulado Estatíistica de ordem Likelihood Modelo de regressão log-odd log-logístico Weibull Momentos Regression analysis and correlation Survival analysis |
title_short |
A nova família de distribuições odd log-logística: teoria e aplicações |
title_full |
A nova família de distribuições odd log-logística: teoria e aplicações |
title_fullStr |
A nova família de distribuições odd log-logística: teoria e aplicações |
title_full_unstemmed |
A nova família de distribuições odd log-logística: teoria e aplicações |
title_sort |
A nova família de distribuições odd log-logística: teoria e aplicações |
author |
Cruz, José Nilton da |
author_facet |
Cruz, José Nilton da |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ortega, Edwin Moises Marcos |
dc.contributor.author.fl_str_mv |
Cruz, José Nilton da |
dc.subject.por.fl_str_mv |
Censored data Censura informativa Distribuição odd log-logística Fréchet Distribuição odd log-logística half-normal generalizada Distribuição odd log-logística Weibull Distributions (probability) Envelope simulado Estatíistica de ordem Likelihood Modelo de regressão log-odd log-logístico Weibull Momentos Regression analysis and correlation Survival analysis |
topic |
Censored data Censura informativa Distribuição odd log-logística Fréchet Distribuição odd log-logística half-normal generalizada Distribuição odd log-logística Weibull Distributions (probability) Envelope simulado Estatíistica de ordem Likelihood Modelo de regressão log-odd log-logístico Weibull Momentos Regression analysis and correlation Survival analysis |
description |
Neste trabalho, foi proposta uma nova família de distribuições, a qual permite modelar dados de sobrevivência quando a função de risco tem formas unimodal e U (banheira). Ainda, foram consideradas as modificações das distribuições Weibull, Fréchet, half-normal generalizada, log-logística e lognormal. Tomando dados não-censurados e censurados, considerou-se os estimadores de máxima verossimilhança para o modelo proposto, a fim de verificar a flexibilidade da nova família. Além disso, um modelo de regressão locação-escala foi utilizado para verificar a influência de covariáveis nos tempos de sobrevida. Adicionalmente, conduziu-se uma análise de resíduos baseada nos resíduos deviance modificada. Estudos de simulação, utilizando-se de diferentes atribuições dos parâmetros, porcentagens de censura e tamanhos amostrais, foram conduzidos com o objetivo de verificar a distribuição empírica dos resíduos tipo martingale e deviance modificada. Para detectar observações influentes, foram utilizadas medidas de influência local, que são medidas de diagnóstico baseadas em pequenas perturbações nos dados ou no modelo proposto. Podem ocorrer situações em que a suposição de independência entre os tempos de falha e censura não seja válida. Assim, outro objetivo desse trabalho é considerar o mecanismo de censura informativa, baseado na verossimilhança marginal, considerando a distribuição log-odd log-logística Weibull na modelagem. Por fim, as metodologias descritas são aplicadas a conjuntos de dados reais. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-02-18 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-03052016-183138/ |
url |
http://www.teses.usp.br/teses/disponiveis/11/11134/tde-03052016-183138/ |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
|
dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.coverage.none.fl_str_mv |
|
dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
instname_str |
Universidade de São Paulo (USP) |
instacron_str |
USP |
institution |
USP |
reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
collection |
Biblioteca Digital de Teses e Dissertações da USP |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
_version_ |
1815256634287456256 |