An elementary proof of Euler's formula using Cauchy's method
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.topol.2020.107558 http://hdl.handle.net/11449/205712 |
Resumo: | The use of Cauchy's method to prove Euler's well-known formula is an object of many controversies. The purpose of this paper is to prove that Cauchy's method applies for convex polyhedra and not only for them, but also for surfaces such as the torus, the projective plane, the Klein bottle and the pinched torus. |
id |
UNSP_4753b1c1aad069987cbe0f134cdce250 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/205712 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
An elementary proof of Euler's formula using Cauchy's methodCauchyDescartesEuler formulaPolyhedronThe use of Cauchy's method to prove Euler's well-known formula is an object of many controversies. The purpose of this paper is to prove that Cauchy's method applies for convex polyhedra and not only for them, but also for surfaces such as the torus, the projective plane, the Klein bottle and the pinched torus.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNRS I2M Aix-Marseille UniversitéUNESP Universidade Estadual Paulista “Júlio de Mesquita Filho”UNESP Universidade Estadual Paulista “Júlio de Mesquita Filho”FAPESP: 2015/06697-9Aix-Marseille UniversitéUniversidade Estadual Paulista (Unesp)Brasselet, Jean-PaulThủy, Nguyn̂̃n Thị Bích [UNESP]2021-06-25T10:19:59Z2021-06-25T10:19:59Z2021-04-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.topol.2020.107558Topology and its Applications, v. 293.0166-8641http://hdl.handle.net/11449/20571210.1016/j.topol.2020.1075582-s2.0-85099170323Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengTopology and its Applicationsinfo:eu-repo/semantics/openAccess2021-10-22T14:02:46Zoai:repositorio.unesp.br:11449/205712Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T15:46:31.554361Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
An elementary proof of Euler's formula using Cauchy's method |
title |
An elementary proof of Euler's formula using Cauchy's method |
spellingShingle |
An elementary proof of Euler's formula using Cauchy's method Brasselet, Jean-Paul Cauchy Descartes Euler formula Polyhedron |
title_short |
An elementary proof of Euler's formula using Cauchy's method |
title_full |
An elementary proof of Euler's formula using Cauchy's method |
title_fullStr |
An elementary proof of Euler's formula using Cauchy's method |
title_full_unstemmed |
An elementary proof of Euler's formula using Cauchy's method |
title_sort |
An elementary proof of Euler's formula using Cauchy's method |
author |
Brasselet, Jean-Paul |
author_facet |
Brasselet, Jean-Paul Thủy, Nguyn̂̃n Thị Bích [UNESP] |
author_role |
author |
author2 |
Thủy, Nguyn̂̃n Thị Bích [UNESP] |
author2_role |
author |
dc.contributor.none.fl_str_mv |
Aix-Marseille Université Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Brasselet, Jean-Paul Thủy, Nguyn̂̃n Thị Bích [UNESP] |
dc.subject.por.fl_str_mv |
Cauchy Descartes Euler formula Polyhedron |
topic |
Cauchy Descartes Euler formula Polyhedron |
description |
The use of Cauchy's method to prove Euler's well-known formula is an object of many controversies. The purpose of this paper is to prove that Cauchy's method applies for convex polyhedra and not only for them, but also for surfaces such as the torus, the projective plane, the Klein bottle and the pinched torus. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-06-25T10:19:59Z 2021-06-25T10:19:59Z 2021-04-15 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.topol.2020.107558 Topology and its Applications, v. 293. 0166-8641 http://hdl.handle.net/11449/205712 10.1016/j.topol.2020.107558 2-s2.0-85099170323 |
url |
http://dx.doi.org/10.1016/j.topol.2020.107558 http://hdl.handle.net/11449/205712 |
identifier_str_mv |
Topology and its Applications, v. 293. 0166-8641 10.1016/j.topol.2020.107558 2-s2.0-85099170323 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Topology and its Applications |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128559691071488 |