Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/SIBGRAPI.2017.28 http://hdl.handle.net/11449/179509 |
Resumo: | Approximately 50,000 to 60,000 new cases of Parkinson's disease (PD) are diagnosed yearly. Despite being non-lethal, PD shortens life expectancy of the ones affected with such disease. As such, researchers from different fields of study have put great effort in order to develop methods aiming the identification of PD in its early stages. This work uses handwriting dynamics data acquired by a series of tasks and proposes the application of a deep-driven graph-based clustering algorithm known as Optimum-Path Forest to learn a dictionary-like representation of each individual in order to automatic identify Parkinson's disease. Experimental results have shown promising results, with results comparable to some state-of-the-art approaches in the literature. |
id |
UNSP_60a45e68afd4d2804acccd0581c1a0d3 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/179509 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Parkinson's Disease Identification through Deep Optimum-Path Forest ClusteringHandwriting DynamicsOptimum-Path ForestParkinson's diseaseApproximately 50,000 to 60,000 new cases of Parkinson's disease (PD) are diagnosed yearly. Despite being non-lethal, PD shortens life expectancy of the ones affected with such disease. As such, researchers from different fields of study have put great effort in order to develop methods aiming the identification of PD in its early stages. This work uses handwriting dynamics data acquired by a series of tasks and proposes the application of a deep-driven graph-based clustering algorithm known as Optimum-Path Forest to learn a dictionary-like representation of each individual in order to automatic identify Parkinson's disease. Experimental results have shown promising results, with results comparable to some state-of-the-art approaches in the literature.UFSCar Federal University of São Carlos Department of ComputingUNESP São Paulo State University Medical SchoolOstbayerische Tech. Hochschule Fakultät Informatik/MathematikUNESP São Paulo State University School of SciencesUNESP São Paulo State University Medical SchoolUNESP São Paulo State University School of SciencesUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Fakultät Informatik/MathematikAfonso, Luis Claudio SugiPereira, Clayton ReginaldoWeber, Silke Anna Theresa [UNESP]Hook, ChristianPapa, Joao Paulo [UNESP]2018-12-11T17:35:28Z2018-12-11T17:35:28Z2017-11-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject163-169http://dx.doi.org/10.1109/SIBGRAPI.2017.28Proceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017, p. 163-169.http://hdl.handle.net/11449/17950910.1109/SIBGRAPI.2017.282-s2.0-85040628693Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017info:eu-repo/semantics/openAccess2024-04-23T16:11:27Zoai:repositorio.unesp.br:11449/179509Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:06:42.050268Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering |
title |
Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering |
spellingShingle |
Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering Afonso, Luis Claudio Sugi Handwriting Dynamics Optimum-Path Forest Parkinson's disease |
title_short |
Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering |
title_full |
Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering |
title_fullStr |
Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering |
title_full_unstemmed |
Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering |
title_sort |
Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering |
author |
Afonso, Luis Claudio Sugi |
author_facet |
Afonso, Luis Claudio Sugi Pereira, Clayton Reginaldo Weber, Silke Anna Theresa [UNESP] Hook, Christian Papa, Joao Paulo [UNESP] |
author_role |
author |
author2 |
Pereira, Clayton Reginaldo Weber, Silke Anna Theresa [UNESP] Hook, Christian Papa, Joao Paulo [UNESP] |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) Fakultät Informatik/Mathematik |
dc.contributor.author.fl_str_mv |
Afonso, Luis Claudio Sugi Pereira, Clayton Reginaldo Weber, Silke Anna Theresa [UNESP] Hook, Christian Papa, Joao Paulo [UNESP] |
dc.subject.por.fl_str_mv |
Handwriting Dynamics Optimum-Path Forest Parkinson's disease |
topic |
Handwriting Dynamics Optimum-Path Forest Parkinson's disease |
description |
Approximately 50,000 to 60,000 new cases of Parkinson's disease (PD) are diagnosed yearly. Despite being non-lethal, PD shortens life expectancy of the ones affected with such disease. As such, researchers from different fields of study have put great effort in order to develop methods aiming the identification of PD in its early stages. This work uses handwriting dynamics data acquired by a series of tasks and proposes the application of a deep-driven graph-based clustering algorithm known as Optimum-Path Forest to learn a dictionary-like representation of each individual in order to automatic identify Parkinson's disease. Experimental results have shown promising results, with results comparable to some state-of-the-art approaches in the literature. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-11-03 2018-12-11T17:35:28Z 2018-12-11T17:35:28Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/SIBGRAPI.2017.28 Proceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017, p. 163-169. http://hdl.handle.net/11449/179509 10.1109/SIBGRAPI.2017.28 2-s2.0-85040628693 |
url |
http://dx.doi.org/10.1109/SIBGRAPI.2017.28 http://hdl.handle.net/11449/179509 |
identifier_str_mv |
Proceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017, p. 163-169. 10.1109/SIBGRAPI.2017.28 2-s2.0-85040628693 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
163-169 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129285467144192 |