Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering

Detalhes bibliográficos
Autor(a) principal: Afonso, Luis Claudio Sugi
Data de Publicação: 2017
Outros Autores: Pereira, Clayton Reginaldo, Weber, Silke Anna Theresa [UNESP], Hook, Christian, Papa, Joao Paulo [UNESP]
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/SIBGRAPI.2017.28
http://hdl.handle.net/11449/179509
Resumo: Approximately 50,000 to 60,000 new cases of Parkinson's disease (PD) are diagnosed yearly. Despite being non-lethal, PD shortens life expectancy of the ones affected with such disease. As such, researchers from different fields of study have put great effort in order to develop methods aiming the identification of PD in its early stages. This work uses handwriting dynamics data acquired by a series of tasks and proposes the application of a deep-driven graph-based clustering algorithm known as Optimum-Path Forest to learn a dictionary-like representation of each individual in order to automatic identify Parkinson's disease. Experimental results have shown promising results, with results comparable to some state-of-the-art approaches in the literature.
id UNSP_60a45e68afd4d2804acccd0581c1a0d3
oai_identifier_str oai:repositorio.unesp.br:11449/179509
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Parkinson's Disease Identification through Deep Optimum-Path Forest ClusteringHandwriting DynamicsOptimum-Path ForestParkinson's diseaseApproximately 50,000 to 60,000 new cases of Parkinson's disease (PD) are diagnosed yearly. Despite being non-lethal, PD shortens life expectancy of the ones affected with such disease. As such, researchers from different fields of study have put great effort in order to develop methods aiming the identification of PD in its early stages. This work uses handwriting dynamics data acquired by a series of tasks and proposes the application of a deep-driven graph-based clustering algorithm known as Optimum-Path Forest to learn a dictionary-like representation of each individual in order to automatic identify Parkinson's disease. Experimental results have shown promising results, with results comparable to some state-of-the-art approaches in the literature.UFSCar Federal University of São Carlos Department of ComputingUNESP São Paulo State University Medical SchoolOstbayerische Tech. Hochschule Fakultät Informatik/MathematikUNESP São Paulo State University School of SciencesUNESP São Paulo State University Medical SchoolUNESP São Paulo State University School of SciencesUniversidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Fakultät Informatik/MathematikAfonso, Luis Claudio SugiPereira, Clayton ReginaldoWeber, Silke Anna Theresa [UNESP]Hook, ChristianPapa, Joao Paulo [UNESP]2018-12-11T17:35:28Z2018-12-11T17:35:28Z2017-11-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject163-169http://dx.doi.org/10.1109/SIBGRAPI.2017.28Proceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017, p. 163-169.http://hdl.handle.net/11449/17950910.1109/SIBGRAPI.2017.282-s2.0-85040628693Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017info:eu-repo/semantics/openAccess2024-04-23T16:11:27Zoai:repositorio.unesp.br:11449/179509Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T21:06:42.050268Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering
title Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering
spellingShingle Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering
Afonso, Luis Claudio Sugi
Handwriting Dynamics
Optimum-Path Forest
Parkinson's disease
title_short Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering
title_full Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering
title_fullStr Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering
title_full_unstemmed Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering
title_sort Parkinson's Disease Identification through Deep Optimum-Path Forest Clustering
author Afonso, Luis Claudio Sugi
author_facet Afonso, Luis Claudio Sugi
Pereira, Clayton Reginaldo
Weber, Silke Anna Theresa [UNESP]
Hook, Christian
Papa, Joao Paulo [UNESP]
author_role author
author2 Pereira, Clayton Reginaldo
Weber, Silke Anna Theresa [UNESP]
Hook, Christian
Papa, Joao Paulo [UNESP]
author2_role author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
Fakultät Informatik/Mathematik
dc.contributor.author.fl_str_mv Afonso, Luis Claudio Sugi
Pereira, Clayton Reginaldo
Weber, Silke Anna Theresa [UNESP]
Hook, Christian
Papa, Joao Paulo [UNESP]
dc.subject.por.fl_str_mv Handwriting Dynamics
Optimum-Path Forest
Parkinson's disease
topic Handwriting Dynamics
Optimum-Path Forest
Parkinson's disease
description Approximately 50,000 to 60,000 new cases of Parkinson's disease (PD) are diagnosed yearly. Despite being non-lethal, PD shortens life expectancy of the ones affected with such disease. As such, researchers from different fields of study have put great effort in order to develop methods aiming the identification of PD in its early stages. This work uses handwriting dynamics data acquired by a series of tasks and proposes the application of a deep-driven graph-based clustering algorithm known as Optimum-Path Forest to learn a dictionary-like representation of each individual in order to automatic identify Parkinson's disease. Experimental results have shown promising results, with results comparable to some state-of-the-art approaches in the literature.
publishDate 2017
dc.date.none.fl_str_mv 2017-11-03
2018-12-11T17:35:28Z
2018-12-11T17:35:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/SIBGRAPI.2017.28
Proceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017, p. 163-169.
http://hdl.handle.net/11449/179509
10.1109/SIBGRAPI.2017.28
2-s2.0-85040628693
url http://dx.doi.org/10.1109/SIBGRAPI.2017.28
http://hdl.handle.net/11449/179509
identifier_str_mv Proceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017, p. 163-169.
10.1109/SIBGRAPI.2017.28
2-s2.0-85040628693
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings - 30th Conference on Graphics, Patterns and Images, SIBGRAPI 2017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 163-169
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129285467144192