Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers

Detalhes bibliográficos
Autor(a) principal: Zhang, Winston
Data de Publicação: 2021
Outros Autores: Bianchi, Jonas [UNESP], Turkestani, Najla Al, Le, Celia, Deleat-Besson, Romain, Ruellas, Antonio, Cevidanes, Lucia, Yatabe, Marilia, Goncalves, Joao [UNESP], Benavides, Erika, Soki, Fabiana, Prieto, Juan, Paniagua, Beatriz, Najarian, Kayvan, Gryak, Jonathan, Soroushmehr, Reza
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/EMBC46164.2021.9629990
http://hdl.handle.net/11449/223211
Resumo: Diagnosis of temporomandibular joint (TMJ) Osteoarthritis (OA) before serious degradation of cartilage and subchondral bone occurs can help prevent chronic pain and disability. Clinical, radiomic, and protein markers collected from TMJ OA patients have been shown to be predictive of OA onset. Since protein data can often be unavailable for clinical diagnosis, we harnessed the learning using privileged information (LUPI) paradigm to make use of protein markers only during classifier training. Three different LUPI algorithms are compared with traditional machine learning models on a dataset extracted from 92 unique OA patients and controls. The best classifier performance of 0.80 AUC and 75.6 accuracy was obtained from the KRVFL+ model using privileged protein features. Results show that LUPI-based algorithms using privileged protein data can improve final diagnostic performance of TMJ OA classifiers without needing protein microarray data during classifier diagnosis.
id UNSP_5154b95311fe0ee8548ad8a7b5a7359e
oai_identifier_str oai:repositorio.unesp.br:11449/223211
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein MarkersDiagnosis of temporomandibular joint (TMJ) Osteoarthritis (OA) before serious degradation of cartilage and subchondral bone occurs can help prevent chronic pain and disability. Clinical, radiomic, and protein markers collected from TMJ OA patients have been shown to be predictive of OA onset. Since protein data can often be unavailable for clinical diagnosis, we harnessed the learning using privileged information (LUPI) paradigm to make use of protein markers only during classifier training. Three different LUPI algorithms are compared with traditional machine learning models on a dataset extracted from 92 unique OA patients and controls. The best classifier performance of 0.80 AUC and 75.6 accuracy was obtained from the KRVFL+ model using privileged protein features. Results show that LUPI-based algorithms using privileged protein data can improve final diagnostic performance of TMJ OA classifiers without needing protein microarray data during classifier diagnosis.Department of Computational Medicine and Bioinformatics University of MichiganDepartment of Orthodontics and Pediatric Dentistry University of MichiganPediatric Dentistry and Orthodontics Sao Paulo State UniversityDepartment of Orthodontics University of the Pacific Arthur A. Dugoni School of DentistryDepartment of Periodontics and Oral Medicine University of MichiganUniversity of North CarolinaDepartments of Psychiatry Orthodontics and Computer Science University of North CarolinaPediatric Dentistry and Orthodontics Sao Paulo State UniversityUniversity of MichiganUniversidade Estadual Paulista (UNESP)Arthur A. Dugoni School of DentistryUniversity of North CarolinaZhang, WinstonBianchi, Jonas [UNESP]Turkestani, Najla AlLe, CeliaDeleat-Besson, RomainRuellas, AntonioCevidanes, LuciaYatabe, MariliaGoncalves, Joao [UNESP]Benavides, ErikaSoki, FabianaPrieto, JuanPaniagua, BeatrizNajarian, KayvanGryak, JonathanSoroushmehr, Reza2022-04-28T19:49:23Z2022-04-28T19:49:23Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1810-1813http://dx.doi.org/10.1109/EMBC46164.2021.9629990Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 1810-1813.1557-170Xhttp://hdl.handle.net/11449/22321110.1109/EMBC46164.2021.96299902-s2.0-85122539006Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBSinfo:eu-repo/semantics/openAccess2022-04-28T19:49:23Zoai:repositorio.unesp.br:11449/223211Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:08:41.133878Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers
title Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers
spellingShingle Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers
Zhang, Winston
title_short Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers
title_full Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers
title_fullStr Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers
title_full_unstemmed Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers
title_sort Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers
author Zhang, Winston
author_facet Zhang, Winston
Bianchi, Jonas [UNESP]
Turkestani, Najla Al
Le, Celia
Deleat-Besson, Romain
Ruellas, Antonio
Cevidanes, Lucia
Yatabe, Marilia
Goncalves, Joao [UNESP]
Benavides, Erika
Soki, Fabiana
Prieto, Juan
Paniagua, Beatriz
Najarian, Kayvan
Gryak, Jonathan
Soroushmehr, Reza
author_role author
author2 Bianchi, Jonas [UNESP]
Turkestani, Najla Al
Le, Celia
Deleat-Besson, Romain
Ruellas, Antonio
Cevidanes, Lucia
Yatabe, Marilia
Goncalves, Joao [UNESP]
Benavides, Erika
Soki, Fabiana
Prieto, Juan
Paniagua, Beatriz
Najarian, Kayvan
Gryak, Jonathan
Soroushmehr, Reza
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv University of Michigan
Universidade Estadual Paulista (UNESP)
Arthur A. Dugoni School of Dentistry
University of North Carolina
dc.contributor.author.fl_str_mv Zhang, Winston
Bianchi, Jonas [UNESP]
Turkestani, Najla Al
Le, Celia
Deleat-Besson, Romain
Ruellas, Antonio
Cevidanes, Lucia
Yatabe, Marilia
Goncalves, Joao [UNESP]
Benavides, Erika
Soki, Fabiana
Prieto, Juan
Paniagua, Beatriz
Najarian, Kayvan
Gryak, Jonathan
Soroushmehr, Reza
description Diagnosis of temporomandibular joint (TMJ) Osteoarthritis (OA) before serious degradation of cartilage and subchondral bone occurs can help prevent chronic pain and disability. Clinical, radiomic, and protein markers collected from TMJ OA patients have been shown to be predictive of OA onset. Since protein data can often be unavailable for clinical diagnosis, we harnessed the learning using privileged information (LUPI) paradigm to make use of protein markers only during classifier training. Three different LUPI algorithms are compared with traditional machine learning models on a dataset extracted from 92 unique OA patients and controls. The best classifier performance of 0.80 AUC and 75.6 accuracy was obtained from the KRVFL+ model using privileged protein features. Results show that LUPI-based algorithms using privileged protein data can improve final diagnostic performance of TMJ OA classifiers without needing protein microarray data during classifier diagnosis.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
2022-04-28T19:49:23Z
2022-04-28T19:49:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/EMBC46164.2021.9629990
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 1810-1813.
1557-170X
http://hdl.handle.net/11449/223211
10.1109/EMBC46164.2021.9629990
2-s2.0-85122539006
url http://dx.doi.org/10.1109/EMBC46164.2021.9629990
http://hdl.handle.net/11449/223211
identifier_str_mv Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 1810-1813.
1557-170X
10.1109/EMBC46164.2021.9629990
2-s2.0-85122539006
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1810-1813
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808129397372223488