Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , , , , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/EMBC46164.2021.9629990 http://hdl.handle.net/11449/223211 |
Resumo: | Diagnosis of temporomandibular joint (TMJ) Osteoarthritis (OA) before serious degradation of cartilage and subchondral bone occurs can help prevent chronic pain and disability. Clinical, radiomic, and protein markers collected from TMJ OA patients have been shown to be predictive of OA onset. Since protein data can often be unavailable for clinical diagnosis, we harnessed the learning using privileged information (LUPI) paradigm to make use of protein markers only during classifier training. Three different LUPI algorithms are compared with traditional machine learning models on a dataset extracted from 92 unique OA patients and controls. The best classifier performance of 0.80 AUC and 75.6 accuracy was obtained from the KRVFL+ model using privileged protein features. Results show that LUPI-based algorithms using privileged protein data can improve final diagnostic performance of TMJ OA classifiers without needing protein microarray data during classifier diagnosis. |
id |
UNSP_5154b95311fe0ee8548ad8a7b5a7359e |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/223211 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein MarkersDiagnosis of temporomandibular joint (TMJ) Osteoarthritis (OA) before serious degradation of cartilage and subchondral bone occurs can help prevent chronic pain and disability. Clinical, radiomic, and protein markers collected from TMJ OA patients have been shown to be predictive of OA onset. Since protein data can often be unavailable for clinical diagnosis, we harnessed the learning using privileged information (LUPI) paradigm to make use of protein markers only during classifier training. Three different LUPI algorithms are compared with traditional machine learning models on a dataset extracted from 92 unique OA patients and controls. The best classifier performance of 0.80 AUC and 75.6 accuracy was obtained from the KRVFL+ model using privileged protein features. Results show that LUPI-based algorithms using privileged protein data can improve final diagnostic performance of TMJ OA classifiers without needing protein microarray data during classifier diagnosis.Department of Computational Medicine and Bioinformatics University of MichiganDepartment of Orthodontics and Pediatric Dentistry University of MichiganPediatric Dentistry and Orthodontics Sao Paulo State UniversityDepartment of Orthodontics University of the Pacific Arthur A. Dugoni School of DentistryDepartment of Periodontics and Oral Medicine University of MichiganUniversity of North CarolinaDepartments of Psychiatry Orthodontics and Computer Science University of North CarolinaPediatric Dentistry and Orthodontics Sao Paulo State UniversityUniversity of MichiganUniversidade Estadual Paulista (UNESP)Arthur A. Dugoni School of DentistryUniversity of North CarolinaZhang, WinstonBianchi, Jonas [UNESP]Turkestani, Najla AlLe, CeliaDeleat-Besson, RomainRuellas, AntonioCevidanes, LuciaYatabe, MariliaGoncalves, Joao [UNESP]Benavides, ErikaSoki, FabianaPrieto, JuanPaniagua, BeatrizNajarian, KayvanGryak, JonathanSoroushmehr, Reza2022-04-28T19:49:23Z2022-04-28T19:49:23Z2021-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1810-1813http://dx.doi.org/10.1109/EMBC46164.2021.9629990Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 1810-1813.1557-170Xhttp://hdl.handle.net/11449/22321110.1109/EMBC46164.2021.96299902-s2.0-85122539006Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBSinfo:eu-repo/semantics/openAccess2022-04-28T19:49:23Zoai:repositorio.unesp.br:11449/223211Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T22:08:41.133878Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers |
title |
Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers |
spellingShingle |
Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers Zhang, Winston |
title_short |
Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers |
title_full |
Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers |
title_fullStr |
Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers |
title_full_unstemmed |
Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers |
title_sort |
Temporomandibular Joint Osteoarthritis Diagnosis Using Privileged Learning of Protein Markers |
author |
Zhang, Winston |
author_facet |
Zhang, Winston Bianchi, Jonas [UNESP] Turkestani, Najla Al Le, Celia Deleat-Besson, Romain Ruellas, Antonio Cevidanes, Lucia Yatabe, Marilia Goncalves, Joao [UNESP] Benavides, Erika Soki, Fabiana Prieto, Juan Paniagua, Beatriz Najarian, Kayvan Gryak, Jonathan Soroushmehr, Reza |
author_role |
author |
author2 |
Bianchi, Jonas [UNESP] Turkestani, Najla Al Le, Celia Deleat-Besson, Romain Ruellas, Antonio Cevidanes, Lucia Yatabe, Marilia Goncalves, Joao [UNESP] Benavides, Erika Soki, Fabiana Prieto, Juan Paniagua, Beatriz Najarian, Kayvan Gryak, Jonathan Soroushmehr, Reza |
author2_role |
author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
University of Michigan Universidade Estadual Paulista (UNESP) Arthur A. Dugoni School of Dentistry University of North Carolina |
dc.contributor.author.fl_str_mv |
Zhang, Winston Bianchi, Jonas [UNESP] Turkestani, Najla Al Le, Celia Deleat-Besson, Romain Ruellas, Antonio Cevidanes, Lucia Yatabe, Marilia Goncalves, Joao [UNESP] Benavides, Erika Soki, Fabiana Prieto, Juan Paniagua, Beatriz Najarian, Kayvan Gryak, Jonathan Soroushmehr, Reza |
description |
Diagnosis of temporomandibular joint (TMJ) Osteoarthritis (OA) before serious degradation of cartilage and subchondral bone occurs can help prevent chronic pain and disability. Clinical, radiomic, and protein markers collected from TMJ OA patients have been shown to be predictive of OA onset. Since protein data can often be unavailable for clinical diagnosis, we harnessed the learning using privileged information (LUPI) paradigm to make use of protein markers only during classifier training. Three different LUPI algorithms are compared with traditional machine learning models on a dataset extracted from 92 unique OA patients and controls. The best classifier performance of 0.80 AUC and 75.6 accuracy was obtained from the KRVFL+ model using privileged protein features. Results show that LUPI-based algorithms using privileged protein data can improve final diagnostic performance of TMJ OA classifiers without needing protein microarray data during classifier diagnosis. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 2022-04-28T19:49:23Z 2022-04-28T19:49:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/EMBC46164.2021.9629990 Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 1810-1813. 1557-170X http://hdl.handle.net/11449/223211 10.1109/EMBC46164.2021.9629990 2-s2.0-85122539006 |
url |
http://dx.doi.org/10.1109/EMBC46164.2021.9629990 http://hdl.handle.net/11449/223211 |
identifier_str_mv |
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, p. 1810-1813. 1557-170X 10.1109/EMBC46164.2021.9629990 2-s2.0-85122539006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
1810-1813 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129397372223488 |