Elevation of boiling point of coffee extract
Autor(a) principal: | |
---|---|
Data de Publicação: | 2002 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1590/S0104-66322002000100009 http://hdl.handle.net/11449/66778 |
Resumo: | The rise in boiling point of coffee extract was experimentally measured at soluble solids concentrations in the range of 9.2 to 52.4°Brix and pressures between 5.8 × 103 and 9.4 × 104 Pa (abs.). Different approaches to representing experimental data, including the Dühring's rule, the Antoine equation and empirical models proposed in the literature were tested. In the range of 9.2 to 16.2°Brix, the rise in boiling point was nearly independent of pressure, varying only with extract concentration. Considerable deviations of this behavior began to occur at concentrations higher than 16.2°Brix. Experimental data could best be predicted by adjusting an empirical model which consists of a single equation that takes into account the dependence of rise in boiling point on pressure and concentration. |
id |
UNSP_532c19de2002951739b1f2ae24d978c4 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/66778 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Elevation of boiling point of coffee extractConcentrationEvaporationVapor pressureConcentration (process)Food productsFruit juicesCoffee extractsHeat transferThe rise in boiling point of coffee extract was experimentally measured at soluble solids concentrations in the range of 9.2 to 52.4°Brix and pressures between 5.8 × 103 and 9.4 × 104 Pa (abs.). Different approaches to representing experimental data, including the Dühring's rule, the Antoine equation and empirical models proposed in the literature were tested. In the range of 9.2 to 16.2°Brix, the rise in boiling point was nearly independent of pressure, varying only with extract concentration. Considerable deviations of this behavior began to occur at concentrations higher than 16.2°Brix. Experimental data could best be predicted by adjusting an empirical model which consists of a single equation that takes into account the dependence of rise in boiling point on pressure and concentration.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Depto. Engenharia e Tecn. Alimentos Universidade Estadual Paulista UNESP, Sao Jose do Rio Preto - SPDepto. Engenharia e Tecn. Alimentos Universidade Estadual Paulista UNESP, Sao Jose do Rio Preto - SPUniversidade Estadual Paulista (Unesp)Telis-Romero, Javier [UNESP]Cabral, R. A F [UNESP]Kronka, G. Z. [UNESP]Telis, V. R N [UNESP]2014-05-27T11:20:23Z2014-05-27T11:20:23Z2002-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article119-126http://dx.doi.org/10.1590/S0104-66322002000100009Brazilian Journal of Chemical Engineering, v. 19, n. 1, p. 119-126, 2002.0104-6632http://hdl.handle.net/11449/6677810.1590/S0104-66322002000100009S0104-66322002000100009WOS:0001741495000092-s2.0-003618643094570810881081680000-0002-2553-4629Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengBrazilian Journal of Chemical Engineering0.9250,395info:eu-repo/semantics/openAccess2021-10-23T10:45:22Zoai:repositorio.unesp.br:11449/66778Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T20:02:12.891743Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Elevation of boiling point of coffee extract |
title |
Elevation of boiling point of coffee extract |
spellingShingle |
Elevation of boiling point of coffee extract Telis-Romero, Javier [UNESP] Concentration Evaporation Vapor pressure Concentration (process) Food products Fruit juices Coffee extracts Heat transfer |
title_short |
Elevation of boiling point of coffee extract |
title_full |
Elevation of boiling point of coffee extract |
title_fullStr |
Elevation of boiling point of coffee extract |
title_full_unstemmed |
Elevation of boiling point of coffee extract |
title_sort |
Elevation of boiling point of coffee extract |
author |
Telis-Romero, Javier [UNESP] |
author_facet |
Telis-Romero, Javier [UNESP] Cabral, R. A F [UNESP] Kronka, G. Z. [UNESP] Telis, V. R N [UNESP] |
author_role |
author |
author2 |
Cabral, R. A F [UNESP] Kronka, G. Z. [UNESP] Telis, V. R N [UNESP] |
author2_role |
author author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Telis-Romero, Javier [UNESP] Cabral, R. A F [UNESP] Kronka, G. Z. [UNESP] Telis, V. R N [UNESP] |
dc.subject.por.fl_str_mv |
Concentration Evaporation Vapor pressure Concentration (process) Food products Fruit juices Coffee extracts Heat transfer |
topic |
Concentration Evaporation Vapor pressure Concentration (process) Food products Fruit juices Coffee extracts Heat transfer |
description |
The rise in boiling point of coffee extract was experimentally measured at soluble solids concentrations in the range of 9.2 to 52.4°Brix and pressures between 5.8 × 103 and 9.4 × 104 Pa (abs.). Different approaches to representing experimental data, including the Dühring's rule, the Antoine equation and empirical models proposed in the literature were tested. In the range of 9.2 to 16.2°Brix, the rise in boiling point was nearly independent of pressure, varying only with extract concentration. Considerable deviations of this behavior began to occur at concentrations higher than 16.2°Brix. Experimental data could best be predicted by adjusting an empirical model which consists of a single equation that takes into account the dependence of rise in boiling point on pressure and concentration. |
publishDate |
2002 |
dc.date.none.fl_str_mv |
2002-01-01 2014-05-27T11:20:23Z 2014-05-27T11:20:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1590/S0104-66322002000100009 Brazilian Journal of Chemical Engineering, v. 19, n. 1, p. 119-126, 2002. 0104-6632 http://hdl.handle.net/11449/66778 10.1590/S0104-66322002000100009 S0104-66322002000100009 WOS:000174149500009 2-s2.0-0036186430 9457081088108168 0000-0002-2553-4629 |
url |
http://dx.doi.org/10.1590/S0104-66322002000100009 http://hdl.handle.net/11449/66778 |
identifier_str_mv |
Brazilian Journal of Chemical Engineering, v. 19, n. 1, p. 119-126, 2002. 0104-6632 10.1590/S0104-66322002000100009 S0104-66322002000100009 WOS:000174149500009 2-s2.0-0036186430 9457081088108168 0000-0002-2553-4629 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Brazilian Journal of Chemical Engineering 0.925 0,395 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
119-126 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808129153505951744 |