Hierarchical learning using deep optimum-path forest

Detalhes bibliográficos
Autor(a) principal: Afonso, Luis C.S.
Data de Publicação: 2020
Outros Autores: Pereira, Clayton R. [UNESP], Weber, Silke A.T. [UNESP], Hook, Christian, Falcão, Alexandre X., Papa, João P. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.jvcir.2020.102823
http://hdl.handle.net/11449/201903
Resumo: Bag-of-Visual Words (BoVW) and deep learning techniques have been widely used in several domains, which include computer-assisted medical diagnoses. In this work, we are interested in developing tools for the automatic identification of Parkinson's disease using machine learning and the concept of BoVW. The proposed approach concerns a hierarchical-based learning technique to design visual dictionaries through the Deep Optimum-Path Forest classifier. The proposed method was evaluated in six datasets derived from data collected from individuals when performing handwriting exams. Experimental results showed the potential of the technique, with robust achievements.
id UNSP_55b560bf39cf778b9ac7e28cbc55ffcf
oai_identifier_str oai:repositorio.unesp.br:11449/201903
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Hierarchical learning using deep optimum-path forestHandwriting dynamicsHierarchical representationOptimum-path forestParkinson's diseaseBag-of-Visual Words (BoVW) and deep learning techniques have been widely used in several domains, which include computer-assisted medical diagnoses. In this work, we are interested in developing tools for the automatic identification of Parkinson's disease using machine learning and the concept of BoVW. The proposed approach concerns a hierarchical-based learning technique to design visual dictionaries through the Deep Optimum-Path Forest classifier. The proposed method was evaluated in six datasets derived from data collected from individuals when performing handwriting exams. Experimental results showed the potential of the technique, with robust achievements.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UFSCar - Federal University of São Carlos Department of ComputingUNESP - São Paulo State University School of SciencesOstbayerische Technische HochschuleUNICAMP - University of Campinas Institute of ComputingUNESP - São Paulo State University School of SciencesFAPESP: #2013/07375-0FAPESP: #2014/12236-1FAPESP: #2019/07665-4CNPq: #307066/2017-7CNPq: #427968/2018-6Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Ostbayerische Technische HochschuleUniversidade Estadual de Campinas (UNICAMP)Afonso, Luis C.S.Pereira, Clayton R. [UNESP]Weber, Silke A.T. [UNESP]Hook, ChristianFalcão, Alexandre X.Papa, João P. [UNESP]2020-12-12T02:44:48Z2020-12-12T02:44:48Z2020-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.jvcir.2020.102823Journal of Visual Communication and Image Representation, v. 71.1095-90761047-3203http://hdl.handle.net/11449/20190310.1016/j.jvcir.2020.1028232-s2.0-85086903747Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Visual Communication and Image Representationinfo:eu-repo/semantics/openAccess2024-04-23T16:10:43Zoai:repositorio.unesp.br:11449/201903Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:41:25.511148Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Hierarchical learning using deep optimum-path forest
title Hierarchical learning using deep optimum-path forest
spellingShingle Hierarchical learning using deep optimum-path forest
Afonso, Luis C.S.
Handwriting dynamics
Hierarchical representation
Optimum-path forest
Parkinson's disease
title_short Hierarchical learning using deep optimum-path forest
title_full Hierarchical learning using deep optimum-path forest
title_fullStr Hierarchical learning using deep optimum-path forest
title_full_unstemmed Hierarchical learning using deep optimum-path forest
title_sort Hierarchical learning using deep optimum-path forest
author Afonso, Luis C.S.
author_facet Afonso, Luis C.S.
Pereira, Clayton R. [UNESP]
Weber, Silke A.T. [UNESP]
Hook, Christian
Falcão, Alexandre X.
Papa, João P. [UNESP]
author_role author
author2 Pereira, Clayton R. [UNESP]
Weber, Silke A.T. [UNESP]
Hook, Christian
Falcão, Alexandre X.
Papa, João P. [UNESP]
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual Paulista (Unesp)
Ostbayerische Technische Hochschule
Universidade Estadual de Campinas (UNICAMP)
dc.contributor.author.fl_str_mv Afonso, Luis C.S.
Pereira, Clayton R. [UNESP]
Weber, Silke A.T. [UNESP]
Hook, Christian
Falcão, Alexandre X.
Papa, João P. [UNESP]
dc.subject.por.fl_str_mv Handwriting dynamics
Hierarchical representation
Optimum-path forest
Parkinson's disease
topic Handwriting dynamics
Hierarchical representation
Optimum-path forest
Parkinson's disease
description Bag-of-Visual Words (BoVW) and deep learning techniques have been widely used in several domains, which include computer-assisted medical diagnoses. In this work, we are interested in developing tools for the automatic identification of Parkinson's disease using machine learning and the concept of BoVW. The proposed approach concerns a hierarchical-based learning technique to design visual dictionaries through the Deep Optimum-Path Forest classifier. The proposed method was evaluated in six datasets derived from data collected from individuals when performing handwriting exams. Experimental results showed the potential of the technique, with robust achievements.
publishDate 2020
dc.date.none.fl_str_mv 2020-12-12T02:44:48Z
2020-12-12T02:44:48Z
2020-08-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.jvcir.2020.102823
Journal of Visual Communication and Image Representation, v. 71.
1095-9076
1047-3203
http://hdl.handle.net/11449/201903
10.1016/j.jvcir.2020.102823
2-s2.0-85086903747
url http://dx.doi.org/10.1016/j.jvcir.2020.102823
http://hdl.handle.net/11449/201903
identifier_str_mv Journal of Visual Communication and Image Representation, v. 71.
1095-9076
1047-3203
10.1016/j.jvcir.2020.102823
2-s2.0-85086903747
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Journal of Visual Communication and Image Representation
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128402970902528