Hierarchical learning using deep optimum-path forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1016/j.jvcir.2020.102823 http://hdl.handle.net/11449/201903 |
Resumo: | Bag-of-Visual Words (BoVW) and deep learning techniques have been widely used in several domains, which include computer-assisted medical diagnoses. In this work, we are interested in developing tools for the automatic identification of Parkinson's disease using machine learning and the concept of BoVW. The proposed approach concerns a hierarchical-based learning technique to design visual dictionaries through the Deep Optimum-Path Forest classifier. The proposed method was evaluated in six datasets derived from data collected from individuals when performing handwriting exams. Experimental results showed the potential of the technique, with robust achievements. |
id |
UNSP_55b560bf39cf778b9ac7e28cbc55ffcf |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/201903 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Hierarchical learning using deep optimum-path forestHandwriting dynamicsHierarchical representationOptimum-path forestParkinson's diseaseBag-of-Visual Words (BoVW) and deep learning techniques have been widely used in several domains, which include computer-assisted medical diagnoses. In this work, we are interested in developing tools for the automatic identification of Parkinson's disease using machine learning and the concept of BoVW. The proposed approach concerns a hierarchical-based learning technique to design visual dictionaries through the Deep Optimum-Path Forest classifier. The proposed method was evaluated in six datasets derived from data collected from individuals when performing handwriting exams. Experimental results showed the potential of the technique, with robust achievements.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)UFSCar - Federal University of São Carlos Department of ComputingUNESP - São Paulo State University School of SciencesOstbayerische Technische HochschuleUNICAMP - University of Campinas Institute of ComputingUNESP - São Paulo State University School of SciencesFAPESP: #2013/07375-0FAPESP: #2014/12236-1FAPESP: #2019/07665-4CNPq: #307066/2017-7CNPq: #427968/2018-6Universidade Federal de São Carlos (UFSCar)Universidade Estadual Paulista (Unesp)Ostbayerische Technische HochschuleUniversidade Estadual de Campinas (UNICAMP)Afonso, Luis C.S.Pereira, Clayton R. [UNESP]Weber, Silke A.T. [UNESP]Hook, ChristianFalcão, Alexandre X.Papa, João P. [UNESP]2020-12-12T02:44:48Z2020-12-12T02:44:48Z2020-08-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1016/j.jvcir.2020.102823Journal of Visual Communication and Image Representation, v. 71.1095-90761047-3203http://hdl.handle.net/11449/20190310.1016/j.jvcir.2020.1028232-s2.0-85086903747Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengJournal of Visual Communication and Image Representationinfo:eu-repo/semantics/openAccess2024-04-23T16:10:43Zoai:repositorio.unesp.br:11449/201903Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:41:25.511148Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Hierarchical learning using deep optimum-path forest |
title |
Hierarchical learning using deep optimum-path forest |
spellingShingle |
Hierarchical learning using deep optimum-path forest Afonso, Luis C.S. Handwriting dynamics Hierarchical representation Optimum-path forest Parkinson's disease |
title_short |
Hierarchical learning using deep optimum-path forest |
title_full |
Hierarchical learning using deep optimum-path forest |
title_fullStr |
Hierarchical learning using deep optimum-path forest |
title_full_unstemmed |
Hierarchical learning using deep optimum-path forest |
title_sort |
Hierarchical learning using deep optimum-path forest |
author |
Afonso, Luis C.S. |
author_facet |
Afonso, Luis C.S. Pereira, Clayton R. [UNESP] Weber, Silke A.T. [UNESP] Hook, Christian Falcão, Alexandre X. Papa, João P. [UNESP] |
author_role |
author |
author2 |
Pereira, Clayton R. [UNESP] Weber, Silke A.T. [UNESP] Hook, Christian Falcão, Alexandre X. Papa, João P. [UNESP] |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual Paulista (Unesp) Ostbayerische Technische Hochschule Universidade Estadual de Campinas (UNICAMP) |
dc.contributor.author.fl_str_mv |
Afonso, Luis C.S. Pereira, Clayton R. [UNESP] Weber, Silke A.T. [UNESP] Hook, Christian Falcão, Alexandre X. Papa, João P. [UNESP] |
dc.subject.por.fl_str_mv |
Handwriting dynamics Hierarchical representation Optimum-path forest Parkinson's disease |
topic |
Handwriting dynamics Hierarchical representation Optimum-path forest Parkinson's disease |
description |
Bag-of-Visual Words (BoVW) and deep learning techniques have been widely used in several domains, which include computer-assisted medical diagnoses. In this work, we are interested in developing tools for the automatic identification of Parkinson's disease using machine learning and the concept of BoVW. The proposed approach concerns a hierarchical-based learning technique to design visual dictionaries through the Deep Optimum-Path Forest classifier. The proposed method was evaluated in six datasets derived from data collected from individuals when performing handwriting exams. Experimental results showed the potential of the technique, with robust achievements. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12-12T02:44:48Z 2020-12-12T02:44:48Z 2020-08-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1016/j.jvcir.2020.102823 Journal of Visual Communication and Image Representation, v. 71. 1095-9076 1047-3203 http://hdl.handle.net/11449/201903 10.1016/j.jvcir.2020.102823 2-s2.0-85086903747 |
url |
http://dx.doi.org/10.1016/j.jvcir.2020.102823 http://hdl.handle.net/11449/201903 |
identifier_str_mv |
Journal of Visual Communication and Image Representation, v. 71. 1095-9076 1047-3203 10.1016/j.jvcir.2020.102823 2-s2.0-85086903747 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Journal of Visual Communication and Image Representation |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128402970902528 |