Learning to Classify Seismic Images with Deep Optimum-Path Forest
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/SIBGRAPI.2016.59 http://hdl.handle.net/11449/163003 |
Resumo: | Due to the lack of labeled information, clustering techniques have been paramount in the last years once more. In this paper, inspired by the deep learning phenomenon, we presented a multi-scale approach to obtain more refined cluster representations of the Optimum-Path Forest (OPF) classifier, which has obtained promising results in a number of works in the literature. Here, we propose to fill a gap in OPF-based works by using a deep-driven representation of the feature space. Additionally, we validated the work in the context of high resolution seismic images aiming at petroleum exploration, as well as in general-purpose applications. Quantitative and qualitative analysis are conducted in order to assess the robustness of the proposed approach. |
id |
UNSP_977312ef804e07f0a2c2ff4def1ec72c |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/163003 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Learning to Classify Seismic Images with Deep Optimum-Path ForestOptimum-Path ForestImage ClusteringDeep RepresentationsSeismic ImagesDue to the lack of labeled information, clustering techniques have been paramount in the last years once more. In this paper, inspired by the deep learning phenomenon, we presented a multi-scale approach to obtain more refined cluster representations of the Optimum-Path Forest (OPF) classifier, which has obtained promising results in a number of works in the literature. Here, we propose to fill a gap in OPF-based works by using a deep-driven representation of the feature space. Additionally, we validated the work in the context of high resolution seismic images aiming at petroleum exploration, as well as in general-purpose applications. Quantitative and qualitative analysis are conducted in order to assess the robustness of the proposed approach.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilUniv Estadual Campinas, Inst Geol, Campinas, SP, BrazilUniv Estadual Campinas, Inst Comp, Campinas, SP, BrazilSao Paulo State Univ, Dept Comp, Bauru, SP, BrazilSao Paulo State Univ, Dept Comp, Bauru, SP, BrazilFAPESP: 2014/16250-9CNPq: 306166/2014-3CNPq: 479070/2013-0CNPq: 302970/2014-2IeeeUniversidade Federal de São Carlos (UFSCar)Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Afonso, LuisVidal, AlexandreKuroda, MichelleFalcao, AlexandrePapa, Joao [UNESP]IEEE2018-11-26T17:39:43Z2018-11-26T17:39:43Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject401-407http://dx.doi.org/10.1109/SIBGRAPI.2016.592016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 401-407, 2016.1530-1834http://hdl.handle.net/11449/16300310.1109/SIBGRAPI.2016.59WOS:000405493800053Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/163003Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:32:48.208061Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Learning to Classify Seismic Images with Deep Optimum-Path Forest |
title |
Learning to Classify Seismic Images with Deep Optimum-Path Forest |
spellingShingle |
Learning to Classify Seismic Images with Deep Optimum-Path Forest Afonso, Luis Optimum-Path Forest Image Clustering Deep Representations Seismic Images |
title_short |
Learning to Classify Seismic Images with Deep Optimum-Path Forest |
title_full |
Learning to Classify Seismic Images with Deep Optimum-Path Forest |
title_fullStr |
Learning to Classify Seismic Images with Deep Optimum-Path Forest |
title_full_unstemmed |
Learning to Classify Seismic Images with Deep Optimum-Path Forest |
title_sort |
Learning to Classify Seismic Images with Deep Optimum-Path Forest |
author |
Afonso, Luis |
author_facet |
Afonso, Luis Vidal, Alexandre Kuroda, Michelle Falcao, Alexandre Papa, Joao [UNESP] IEEE |
author_role |
author |
author2 |
Vidal, Alexandre Kuroda, Michelle Falcao, Alexandre Papa, Joao [UNESP] IEEE |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Universidade Estadual de Campinas (UNICAMP) Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Afonso, Luis Vidal, Alexandre Kuroda, Michelle Falcao, Alexandre Papa, Joao [UNESP] IEEE |
dc.subject.por.fl_str_mv |
Optimum-Path Forest Image Clustering Deep Representations Seismic Images |
topic |
Optimum-Path Forest Image Clustering Deep Representations Seismic Images |
description |
Due to the lack of labeled information, clustering techniques have been paramount in the last years once more. In this paper, inspired by the deep learning phenomenon, we presented a multi-scale approach to obtain more refined cluster representations of the Optimum-Path Forest (OPF) classifier, which has obtained promising results in a number of works in the literature. Here, we propose to fill a gap in OPF-based works by using a deep-driven representation of the feature space. Additionally, we validated the work in the context of high resolution seismic images aiming at petroleum exploration, as well as in general-purpose applications. Quantitative and qualitative analysis are conducted in order to assess the robustness of the proposed approach. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-01-01 2018-11-26T17:39:43Z 2018-11-26T17:39:43Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/SIBGRAPI.2016.59 2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 401-407, 2016. 1530-1834 http://hdl.handle.net/11449/163003 10.1109/SIBGRAPI.2016.59 WOS:000405493800053 |
url |
http://dx.doi.org/10.1109/SIBGRAPI.2016.59 http://hdl.handle.net/11449/163003 |
identifier_str_mv |
2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 401-407, 2016. 1530-1834 10.1109/SIBGRAPI.2016.59 WOS:000405493800053 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi) |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
401-407 |
dc.publisher.none.fl_str_mv |
Ieee |
publisher.none.fl_str_mv |
Ieee |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128226254389248 |