Learning to Classify Seismic Images with Deep Optimum-Path Forest

Detalhes bibliográficos
Autor(a) principal: Afonso, Luis
Data de Publicação: 2016
Outros Autores: Vidal, Alexandre, Kuroda, Michelle, Falcao, Alexandre, Papa, Joao [UNESP], IEEE
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1109/SIBGRAPI.2016.59
http://hdl.handle.net/11449/163003
Resumo: Due to the lack of labeled information, clustering techniques have been paramount in the last years once more. In this paper, inspired by the deep learning phenomenon, we presented a multi-scale approach to obtain more refined cluster representations of the Optimum-Path Forest (OPF) classifier, which has obtained promising results in a number of works in the literature. Here, we propose to fill a gap in OPF-based works by using a deep-driven representation of the feature space. Additionally, we validated the work in the context of high resolution seismic images aiming at petroleum exploration, as well as in general-purpose applications. Quantitative and qualitative analysis are conducted in order to assess the robustness of the proposed approach.
id UNSP_977312ef804e07f0a2c2ff4def1ec72c
oai_identifier_str oai:repositorio.unesp.br:11449/163003
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Learning to Classify Seismic Images with Deep Optimum-Path ForestOptimum-Path ForestImage ClusteringDeep RepresentationsSeismic ImagesDue to the lack of labeled information, clustering techniques have been paramount in the last years once more. In this paper, inspired by the deep learning phenomenon, we presented a multi-scale approach to obtain more refined cluster representations of the Optimum-Path Forest (OPF) classifier, which has obtained promising results in a number of works in the literature. Here, we propose to fill a gap in OPF-based works by using a deep-driven representation of the feature space. Additionally, we validated the work in the context of high resolution seismic images aiming at petroleum exploration, as well as in general-purpose applications. Quantitative and qualitative analysis are conducted in order to assess the robustness of the proposed approach.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Fed Sao Carlos, Dept Comp, Sao Carlos, SP, BrazilUniv Estadual Campinas, Inst Geol, Campinas, SP, BrazilUniv Estadual Campinas, Inst Comp, Campinas, SP, BrazilSao Paulo State Univ, Dept Comp, Bauru, SP, BrazilSao Paulo State Univ, Dept Comp, Bauru, SP, BrazilFAPESP: 2014/16250-9CNPq: 306166/2014-3CNPq: 479070/2013-0CNPq: 302970/2014-2IeeeUniversidade Federal de São Carlos (UFSCar)Universidade Estadual de Campinas (UNICAMP)Universidade Estadual Paulista (Unesp)Afonso, LuisVidal, AlexandreKuroda, MichelleFalcao, AlexandrePapa, Joao [UNESP]IEEE2018-11-26T17:39:43Z2018-11-26T17:39:43Z2016-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject401-407http://dx.doi.org/10.1109/SIBGRAPI.2016.592016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 401-407, 2016.1530-1834http://hdl.handle.net/11449/16300310.1109/SIBGRAPI.2016.59WOS:000405493800053Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)info:eu-repo/semantics/openAccess2024-04-23T16:11:19Zoai:repositorio.unesp.br:11449/163003Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T17:32:48.208061Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Learning to Classify Seismic Images with Deep Optimum-Path Forest
title Learning to Classify Seismic Images with Deep Optimum-Path Forest
spellingShingle Learning to Classify Seismic Images with Deep Optimum-Path Forest
Afonso, Luis
Optimum-Path Forest
Image Clustering
Deep Representations
Seismic Images
title_short Learning to Classify Seismic Images with Deep Optimum-Path Forest
title_full Learning to Classify Seismic Images with Deep Optimum-Path Forest
title_fullStr Learning to Classify Seismic Images with Deep Optimum-Path Forest
title_full_unstemmed Learning to Classify Seismic Images with Deep Optimum-Path Forest
title_sort Learning to Classify Seismic Images with Deep Optimum-Path Forest
author Afonso, Luis
author_facet Afonso, Luis
Vidal, Alexandre
Kuroda, Michelle
Falcao, Alexandre
Papa, Joao [UNESP]
IEEE
author_role author
author2 Vidal, Alexandre
Kuroda, Michelle
Falcao, Alexandre
Papa, Joao [UNESP]
IEEE
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Universidade Estadual de Campinas (UNICAMP)
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Afonso, Luis
Vidal, Alexandre
Kuroda, Michelle
Falcao, Alexandre
Papa, Joao [UNESP]
IEEE
dc.subject.por.fl_str_mv Optimum-Path Forest
Image Clustering
Deep Representations
Seismic Images
topic Optimum-Path Forest
Image Clustering
Deep Representations
Seismic Images
description Due to the lack of labeled information, clustering techniques have been paramount in the last years once more. In this paper, inspired by the deep learning phenomenon, we presented a multi-scale approach to obtain more refined cluster representations of the Optimum-Path Forest (OPF) classifier, which has obtained promising results in a number of works in the literature. Here, we propose to fill a gap in OPF-based works by using a deep-driven representation of the feature space. Additionally, we validated the work in the context of high resolution seismic images aiming at petroleum exploration, as well as in general-purpose applications. Quantitative and qualitative analysis are conducted in order to assess the robustness of the proposed approach.
publishDate 2016
dc.date.none.fl_str_mv 2016-01-01
2018-11-26T17:39:43Z
2018-11-26T17:39:43Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1109/SIBGRAPI.2016.59
2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 401-407, 2016.
1530-1834
http://hdl.handle.net/11449/163003
10.1109/SIBGRAPI.2016.59
WOS:000405493800053
url http://dx.doi.org/10.1109/SIBGRAPI.2016.59
http://hdl.handle.net/11449/163003
identifier_str_mv 2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi). New York: Ieee, p. 401-407, 2016.
1530-1834
10.1109/SIBGRAPI.2016.59
WOS:000405493800053
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 2016 29th Sibgrapi Conference On Graphics, Patterns And Images (sibgrapi)
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 401-407
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128226254389248