Implementation of 3-D multiple linear regression in hardware using the xilinx spartan-3AN FPGA
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1109/ECTI-CON47248.2019.8955155 http://hdl.handle.net/11449/232965 |
Resumo: | In this paper, a linear regression algorithm implementation in hardware using the Field Programmable Gate Array (FPGA) is presented. A two-dimensional (2-D) simple linear regression aims to develop a linear equation of two variables based on observed data values in two dimensions. A more complex problem that this considered in this paper is the three-dimensional (3-D) multiple linear regression that approximates a linear equation of three variables based on a set of observed data points in three dimensions. The algorithm was initially modelled and verified using Python, NumPy and Matplotlib. The linear regression equation was then translated to hardware using a VHDL description of the algorithm targeting the Xilinx Spartan-3AN FPGA. In this paper, the design and simulation of the algorithm based on using the available hardware resources within the FPGA are introduced and discussed. |
id |
UNSP_88d868fdb5e7d6f76f37e8f8fd2fcdf2 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/232965 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Implementation of 3-D multiple linear regression in hardware using the xilinx spartan-3AN FPGAFPGAHardwareLinear regressionMachine learningVHDLIn this paper, a linear regression algorithm implementation in hardware using the Field Programmable Gate Array (FPGA) is presented. A two-dimensional (2-D) simple linear regression aims to develop a linear equation of two variables based on observed data values in two dimensions. A more complex problem that this considered in this paper is the three-dimensional (3-D) multiple linear regression that approximates a linear equation of three variables based on a set of observed data points in three dimensions. The algorithm was initially modelled and verified using Python, NumPy and Matplotlib. The linear regression equation was then translated to hardware using a VHDL description of the algorithm targeting the Xilinx Spartan-3AN FPGA. In this paper, the design and simulation of the algorithm based on using the available hardware resources within the FPGA are introduced and discussed.University of Limerick Department of Electronic and Computer EngineeringUniversidade Estadual Paulista Faculdade de Engenharia Ilha SolteiraUniversidade Estadual Paulista Faculdade de Engenharia Ilha SolteiraUniversity of LimerickUniversidade Estadual Paulista (UNESP)Grout, IanFerreira, Willian De Assis Pedrobon [UNESP]Silva, Alexandre Cesar Rodrigues Da [UNESP]2022-04-30T22:43:07Z2022-04-30T22:43:07Z2019-07-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject171-174http://dx.doi.org/10.1109/ECTI-CON47248.2019.8955155Proceedings of the 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2019, p. 171-174.http://hdl.handle.net/11449/23296510.1109/ECTI-CON47248.2019.89551552-s2.0-85078859132Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProceedings of the 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2019info:eu-repo/semantics/openAccess2024-07-04T19:11:17Zoai:repositorio.unesp.br:11449/232965Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T14:33:41.181868Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Implementation of 3-D multiple linear regression in hardware using the xilinx spartan-3AN FPGA |
title |
Implementation of 3-D multiple linear regression in hardware using the xilinx spartan-3AN FPGA |
spellingShingle |
Implementation of 3-D multiple linear regression in hardware using the xilinx spartan-3AN FPGA Grout, Ian FPGA Hardware Linear regression Machine learning VHDL |
title_short |
Implementation of 3-D multiple linear regression in hardware using the xilinx spartan-3AN FPGA |
title_full |
Implementation of 3-D multiple linear regression in hardware using the xilinx spartan-3AN FPGA |
title_fullStr |
Implementation of 3-D multiple linear regression in hardware using the xilinx spartan-3AN FPGA |
title_full_unstemmed |
Implementation of 3-D multiple linear regression in hardware using the xilinx spartan-3AN FPGA |
title_sort |
Implementation of 3-D multiple linear regression in hardware using the xilinx spartan-3AN FPGA |
author |
Grout, Ian |
author_facet |
Grout, Ian Ferreira, Willian De Assis Pedrobon [UNESP] Silva, Alexandre Cesar Rodrigues Da [UNESP] |
author_role |
author |
author2 |
Ferreira, Willian De Assis Pedrobon [UNESP] Silva, Alexandre Cesar Rodrigues Da [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
University of Limerick Universidade Estadual Paulista (UNESP) |
dc.contributor.author.fl_str_mv |
Grout, Ian Ferreira, Willian De Assis Pedrobon [UNESP] Silva, Alexandre Cesar Rodrigues Da [UNESP] |
dc.subject.por.fl_str_mv |
FPGA Hardware Linear regression Machine learning VHDL |
topic |
FPGA Hardware Linear regression Machine learning VHDL |
description |
In this paper, a linear regression algorithm implementation in hardware using the Field Programmable Gate Array (FPGA) is presented. A two-dimensional (2-D) simple linear regression aims to develop a linear equation of two variables based on observed data values in two dimensions. A more complex problem that this considered in this paper is the three-dimensional (3-D) multiple linear regression that approximates a linear equation of three variables based on a set of observed data points in three dimensions. The algorithm was initially modelled and verified using Python, NumPy and Matplotlib. The linear regression equation was then translated to hardware using a VHDL description of the algorithm targeting the Xilinx Spartan-3AN FPGA. In this paper, the design and simulation of the algorithm based on using the available hardware resources within the FPGA are introduced and discussed. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-01 2022-04-30T22:43:07Z 2022-04-30T22:43:07Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1109/ECTI-CON47248.2019.8955155 Proceedings of the 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2019, p. 171-174. http://hdl.handle.net/11449/232965 10.1109/ECTI-CON47248.2019.8955155 2-s2.0-85078859132 |
url |
http://dx.doi.org/10.1109/ECTI-CON47248.2019.8955155 http://hdl.handle.net/11449/232965 |
identifier_str_mv |
Proceedings of the 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2019, p. 171-174. 10.1109/ECTI-CON47248.2019.8955155 2-s2.0-85078859132 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Proceedings of the 16th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2019 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
171-174 |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1808128377486311424 |