3D Auto-Segmentation of Mandibular Condyles

Detalhes bibliográficos
Autor(a) principal: Brosset, Serge
Data de Publicação: 2020
Outros Autores: Dumont, Maxime, Bianchi, Jonas [UNESP], Ruellas, Antonio, Cevidanes, Lucia, Yatabe, Marilia, Goncalves, Joao [UNESP], Benavides, Erika, Soki, Fabiana, Paniagua, Beatriz, Prieto, Juan, Najarian, Kayvan, Gryak, Jonathan, Soroushmehr, Reza, IEEE
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://hdl.handle.net/11449/209230
Resumo: Temporomandibular joints (TMJ) like a hinge connect the jawbone to the skull. TMJ disorders could cause pain in the jaw joint and the muscles controlling jaw movement. However, the disease cannot be diagnosed until it becomes symptomatic. It has been shown that bone resorption at the condyle articular surface is already evident at initial diagnosis of TMJ Osteoarthritis (OA). Therefore, analyzing the bone structure will facilitate the disease diagnosis. The important step towards this analysis is the condyle segmentation. This article deals with a method to automatically segment the temporomandibular joint condyle out of cone beam CT (CBCT) scans. In the proposed method we denoise images and apply 3D active contour and morphological operations to segment the condyle. The experimental results show that the proposed method yields the Dice score of 0.9461 with the standards deviation of 0.0888 when it is applied on CBCT images of 95 patients. This segmentation will allow large datasets to be analyzed more efficiently towards data sciences and machine learning approaches for disease classification.
id UNSP_a14b6888ea70c1d4165d7cd07b306766
oai_identifier_str oai:repositorio.unesp.br:11449/209230
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling 3D Auto-Segmentation of Mandibular CondylesTemporomandibular joints (TMJ) like a hinge connect the jawbone to the skull. TMJ disorders could cause pain in the jaw joint and the muscles controlling jaw movement. However, the disease cannot be diagnosed until it becomes symptomatic. It has been shown that bone resorption at the condyle articular surface is already evident at initial diagnosis of TMJ Osteoarthritis (OA). Therefore, analyzing the bone structure will facilitate the disease diagnosis. The important step towards this analysis is the condyle segmentation. This article deals with a method to automatically segment the temporomandibular joint condyle out of cone beam CT (CBCT) scans. In the proposed method we denoise images and apply 3D active contour and morphological operations to segment the condyle. The experimental results show that the proposed method yields the Dice score of 0.9461 with the standards deviation of 0.0888 when it is applied on CBCT images of 95 patients. This segmentation will allow large datasets to be analyzed more efficiently towards data sciences and machine learning approaches for disease classification.NIDCRUniv Michigan, Dept Orthodont & Pediat Dent, Ann Arbor, MI 48109 USASao Paulo State Univ, Pediat Dent & Orthodont, Sao Paulo, BrazilUniv Michigan, Dept Periodont & Oral Med, Ann Arbor, MI 48109 USAUniv Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USAUniv N Carolina, Psychiat, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Psychiat, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Orthodont, Chapel Hill, NC 27515 USAUniv N Carolina, Dept Comp Sci, Chapel Hill, NC 27515 USASao Paulo State Univ, Pediat Dent & Orthodont, Sao Paulo, BrazilNIDCR: DEO24450IeeeUniv MichiganUniversidade Estadual Paulista (Unesp)Univ N CarolinaBrosset, SergeDumont, MaximeBianchi, Jonas [UNESP]Ruellas, AntonioCevidanes, LuciaYatabe, MariliaGoncalves, Joao [UNESP]Benavides, ErikaSoki, FabianaPaniagua, BeatrizPrieto, JuanNajarian, KayvanGryak, JonathanSoroushmehr, RezaIEEE2021-06-25T11:52:19Z2021-06-25T11:52:19Z2020-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject1270-127342nd Annual International Conferences Of The Ieee Engineering In Medicine And Biology Society: Enabling Innovative Technologies For Global Healthcare Embc'20. New York: Ieee, p. 1270-1273, 2020.1557-170Xhttp://hdl.handle.net/11449/209230WOS:000621592201146Web of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPeng42nd Annual International Conferences Of The Ieee Engineering In Medicine And Biology Society: Enabling Innovative Technologies For Global Healthcare Embc'20info:eu-repo/semantics/openAccess2021-10-23T19:23:38Zoai:repositorio.unesp.br:11449/209230Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T13:33:32.062307Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv 3D Auto-Segmentation of Mandibular Condyles
title 3D Auto-Segmentation of Mandibular Condyles
spellingShingle 3D Auto-Segmentation of Mandibular Condyles
Brosset, Serge
title_short 3D Auto-Segmentation of Mandibular Condyles
title_full 3D Auto-Segmentation of Mandibular Condyles
title_fullStr 3D Auto-Segmentation of Mandibular Condyles
title_full_unstemmed 3D Auto-Segmentation of Mandibular Condyles
title_sort 3D Auto-Segmentation of Mandibular Condyles
author Brosset, Serge
author_facet Brosset, Serge
Dumont, Maxime
Bianchi, Jonas [UNESP]
Ruellas, Antonio
Cevidanes, Lucia
Yatabe, Marilia
Goncalves, Joao [UNESP]
Benavides, Erika
Soki, Fabiana
Paniagua, Beatriz
Prieto, Juan
Najarian, Kayvan
Gryak, Jonathan
Soroushmehr, Reza
IEEE
author_role author
author2 Dumont, Maxime
Bianchi, Jonas [UNESP]
Ruellas, Antonio
Cevidanes, Lucia
Yatabe, Marilia
Goncalves, Joao [UNESP]
Benavides, Erika
Soki, Fabiana
Paniagua, Beatriz
Prieto, Juan
Najarian, Kayvan
Gryak, Jonathan
Soroushmehr, Reza
IEEE
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv Univ Michigan
Universidade Estadual Paulista (Unesp)
Univ N Carolina
dc.contributor.author.fl_str_mv Brosset, Serge
Dumont, Maxime
Bianchi, Jonas [UNESP]
Ruellas, Antonio
Cevidanes, Lucia
Yatabe, Marilia
Goncalves, Joao [UNESP]
Benavides, Erika
Soki, Fabiana
Paniagua, Beatriz
Prieto, Juan
Najarian, Kayvan
Gryak, Jonathan
Soroushmehr, Reza
IEEE
description Temporomandibular joints (TMJ) like a hinge connect the jawbone to the skull. TMJ disorders could cause pain in the jaw joint and the muscles controlling jaw movement. However, the disease cannot be diagnosed until it becomes symptomatic. It has been shown that bone resorption at the condyle articular surface is already evident at initial diagnosis of TMJ Osteoarthritis (OA). Therefore, analyzing the bone structure will facilitate the disease diagnosis. The important step towards this analysis is the condyle segmentation. This article deals with a method to automatically segment the temporomandibular joint condyle out of cone beam CT (CBCT) scans. In the proposed method we denoise images and apply 3D active contour and morphological operations to segment the condyle. The experimental results show that the proposed method yields the Dice score of 0.9461 with the standards deviation of 0.0888 when it is applied on CBCT images of 95 patients. This segmentation will allow large datasets to be analyzed more efficiently towards data sciences and machine learning approaches for disease classification.
publishDate 2020
dc.date.none.fl_str_mv 2020-01-01
2021-06-25T11:52:19Z
2021-06-25T11:52:19Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv 42nd Annual International Conferences Of The Ieee Engineering In Medicine And Biology Society: Enabling Innovative Technologies For Global Healthcare Embc'20. New York: Ieee, p. 1270-1273, 2020.
1557-170X
http://hdl.handle.net/11449/209230
WOS:000621592201146
identifier_str_mv 42nd Annual International Conferences Of The Ieee Engineering In Medicine And Biology Society: Enabling Innovative Technologies For Global Healthcare Embc'20. New York: Ieee, p. 1270-1273, 2020.
1557-170X
WOS:000621592201146
url http://hdl.handle.net/11449/209230
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 42nd Annual International Conferences Of The Ieee Engineering In Medicine And Biology Society: Enabling Innovative Technologies For Global Healthcare Embc'20
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 1270-1273
dc.publisher.none.fl_str_mv Ieee
publisher.none.fl_str_mv Ieee
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128246400679936