Application of the Slater criteria to localize invariant tori in Hamiltonian mappings
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
DOI: | 10.1063/5.0103427 |
Texto Completo: | http://dx.doi.org/10.1063/5.0103427 http://hdl.handle.net/11449/245997 |
Resumo: | We investigate the localization of invariant spanning curves for a family of two-dimensional area-preserving mappings described by the dynamical variables I and θ by using Slater's criterion. The Slater theorem says there are three different return times for an irrational translation over a circle in a given interval. The returning time, which measures the number of iterations a map needs to return to a given periodic or quasi periodic region, has three responses along an invariant spanning curve. They are related to a continued fraction expansion used in the translation and obey the Fibonacci sequence. The rotation numbers for such curves are related to a noble number, leading to a devil's staircase structure. The behavior of the rotation number as a function of invariant spanning curves located by Slater's criterion resulted in an expression of a power law in which the absolute value of the exponent is equal to the control parameter γ that controls the speed of the divergence of θ in the limit the action I is sufficiently small. |
id |
UNSP_a48eb0d4776417bb42bc182b707a783f |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/245997 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Application of the Slater criteria to localize invariant tori in Hamiltonian mappingsWe investigate the localization of invariant spanning curves for a family of two-dimensional area-preserving mappings described by the dynamical variables I and θ by using Slater's criterion. The Slater theorem says there are three different return times for an irrational translation over a circle in a given interval. The returning time, which measures the number of iterations a map needs to return to a given periodic or quasi periodic region, has three responses along an invariant spanning curve. They are related to a continued fraction expansion used in the translation and obey the Fibonacci sequence. The rotation numbers for such curves are related to a noble number, leading to a devil's staircase structure. The behavior of the rotation number as a function of invariant spanning curves located by Slater's criterion resulted in an expression of a power law in which the absolute value of the exponent is equal to the control parameter γ that controls the speed of the divergence of θ in the limit the action I is sufficiently small.Department of Physics São Paulo State University - Unesp, Av. 24A, 1515 Bela Vista, SPFederal Institute of Education Science and Technology of South of Minas Gerais - Ifsuldeminas, Praça Tiradentes 416 - Centro - Inconfidentes, MGDepartment of Physics São Paulo State University - Unesp, Av. 24A, 1515 Bela Vista, SPUniversidade Estadual Paulista (UNESP)Science and Technology of South of Minas Gerais - IfsuldeminasHuggler, Yoná H. [UNESP]Hermes, Joelson D. V. [UNESP]Leonel, Edson D. [UNESP]2023-07-29T12:28:56Z2023-07-29T12:28:56Z2022-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1063/5.0103427Chaos, v. 32, n. 9, 2022.1089-76821054-1500http://hdl.handle.net/11449/24599710.1063/5.01034272-s2.0-85139130410Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChaosinfo:eu-repo/semantics/openAccess2023-07-29T12:28:56Zoai:repositorio.unesp.br:11449/245997Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:03:51.751535Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Application of the Slater criteria to localize invariant tori in Hamiltonian mappings |
title |
Application of the Slater criteria to localize invariant tori in Hamiltonian mappings |
spellingShingle |
Application of the Slater criteria to localize invariant tori in Hamiltonian mappings Application of the Slater criteria to localize invariant tori in Hamiltonian mappings Huggler, Yoná H. [UNESP] Huggler, Yoná H. [UNESP] |
title_short |
Application of the Slater criteria to localize invariant tori in Hamiltonian mappings |
title_full |
Application of the Slater criteria to localize invariant tori in Hamiltonian mappings |
title_fullStr |
Application of the Slater criteria to localize invariant tori in Hamiltonian mappings Application of the Slater criteria to localize invariant tori in Hamiltonian mappings |
title_full_unstemmed |
Application of the Slater criteria to localize invariant tori in Hamiltonian mappings Application of the Slater criteria to localize invariant tori in Hamiltonian mappings |
title_sort |
Application of the Slater criteria to localize invariant tori in Hamiltonian mappings |
author |
Huggler, Yoná H. [UNESP] |
author_facet |
Huggler, Yoná H. [UNESP] Huggler, Yoná H. [UNESP] Hermes, Joelson D. V. [UNESP] Leonel, Edson D. [UNESP] Hermes, Joelson D. V. [UNESP] Leonel, Edson D. [UNESP] |
author_role |
author |
author2 |
Hermes, Joelson D. V. [UNESP] Leonel, Edson D. [UNESP] |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Universidade Estadual Paulista (UNESP) Science and Technology of South of Minas Gerais - Ifsuldeminas |
dc.contributor.author.fl_str_mv |
Huggler, Yoná H. [UNESP] Hermes, Joelson D. V. [UNESP] Leonel, Edson D. [UNESP] |
description |
We investigate the localization of invariant spanning curves for a family of two-dimensional area-preserving mappings described by the dynamical variables I and θ by using Slater's criterion. The Slater theorem says there are three different return times for an irrational translation over a circle in a given interval. The returning time, which measures the number of iterations a map needs to return to a given periodic or quasi periodic region, has three responses along an invariant spanning curve. They are related to a continued fraction expansion used in the translation and obey the Fibonacci sequence. The rotation numbers for such curves are related to a noble number, leading to a devil's staircase structure. The behavior of the rotation number as a function of invariant spanning curves located by Slater's criterion resulted in an expression of a power law in which the absolute value of the exponent is equal to the control parameter γ that controls the speed of the divergence of θ in the limit the action I is sufficiently small. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-09-01 2023-07-29T12:28:56Z 2023-07-29T12:28:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1063/5.0103427 Chaos, v. 32, n. 9, 2022. 1089-7682 1054-1500 http://hdl.handle.net/11449/245997 10.1063/5.0103427 2-s2.0-85139130410 |
url |
http://dx.doi.org/10.1063/5.0103427 http://hdl.handle.net/11449/245997 |
identifier_str_mv |
Chaos, v. 32, n. 9, 2022. 1089-7682 1054-1500 10.1063/5.0103427 2-s2.0-85139130410 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Chaos |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
|
_version_ |
1822182352378396672 |
dc.identifier.doi.none.fl_str_mv |
10.1063/5.0103427 |