Application of the Slater criteria to localize invariant tori in Hamiltonian mappings

Detalhes bibliográficos
Autor(a) principal: Huggler, Yoná H. [UNESP]
Data de Publicação: 2022
Outros Autores: Hermes, Joelson D. V. [UNESP], Leonel, Edson D. [UNESP]
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
DOI: 10.1063/5.0103427
Texto Completo: http://dx.doi.org/10.1063/5.0103427
http://hdl.handle.net/11449/245997
Resumo: We investigate the localization of invariant spanning curves for a family of two-dimensional area-preserving mappings described by the dynamical variables I and θ by using Slater's criterion. The Slater theorem says there are three different return times for an irrational translation over a circle in a given interval. The returning time, which measures the number of iterations a map needs to return to a given periodic or quasi periodic region, has three responses along an invariant spanning curve. They are related to a continued fraction expansion used in the translation and obey the Fibonacci sequence. The rotation numbers for such curves are related to a noble number, leading to a devil's staircase structure. The behavior of the rotation number as a function of invariant spanning curves located by Slater's criterion resulted in an expression of a power law in which the absolute value of the exponent is equal to the control parameter γ that controls the speed of the divergence of θ in the limit the action I is sufficiently small.
id UNSP_a48eb0d4776417bb42bc182b707a783f
oai_identifier_str oai:repositorio.unesp.br:11449/245997
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Application of the Slater criteria to localize invariant tori in Hamiltonian mappingsWe investigate the localization of invariant spanning curves for a family of two-dimensional area-preserving mappings described by the dynamical variables I and θ by using Slater's criterion. The Slater theorem says there are three different return times for an irrational translation over a circle in a given interval. The returning time, which measures the number of iterations a map needs to return to a given periodic or quasi periodic region, has three responses along an invariant spanning curve. They are related to a continued fraction expansion used in the translation and obey the Fibonacci sequence. The rotation numbers for such curves are related to a noble number, leading to a devil's staircase structure. The behavior of the rotation number as a function of invariant spanning curves located by Slater's criterion resulted in an expression of a power law in which the absolute value of the exponent is equal to the control parameter γ that controls the speed of the divergence of θ in the limit the action I is sufficiently small.Department of Physics São Paulo State University - Unesp, Av. 24A, 1515 Bela Vista, SPFederal Institute of Education Science and Technology of South of Minas Gerais - Ifsuldeminas, Praça Tiradentes 416 - Centro - Inconfidentes, MGDepartment of Physics São Paulo State University - Unesp, Av. 24A, 1515 Bela Vista, SPUniversidade Estadual Paulista (UNESP)Science and Technology of South of Minas Gerais - IfsuldeminasHuggler, Yoná H. [UNESP]Hermes, Joelson D. V. [UNESP]Leonel, Edson D. [UNESP]2023-07-29T12:28:56Z2023-07-29T12:28:56Z2022-09-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1063/5.0103427Chaos, v. 32, n. 9, 2022.1089-76821054-1500http://hdl.handle.net/11449/24599710.1063/5.01034272-s2.0-85139130410Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengChaosinfo:eu-repo/semantics/openAccess2023-07-29T12:28:56Zoai:repositorio.unesp.br:11449/245997Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T19:03:51.751535Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Application of the Slater criteria to localize invariant tori in Hamiltonian mappings
title Application of the Slater criteria to localize invariant tori in Hamiltonian mappings
spellingShingle Application of the Slater criteria to localize invariant tori in Hamiltonian mappings
Application of the Slater criteria to localize invariant tori in Hamiltonian mappings
Huggler, Yoná H. [UNESP]
Huggler, Yoná H. [UNESP]
title_short Application of the Slater criteria to localize invariant tori in Hamiltonian mappings
title_full Application of the Slater criteria to localize invariant tori in Hamiltonian mappings
title_fullStr Application of the Slater criteria to localize invariant tori in Hamiltonian mappings
Application of the Slater criteria to localize invariant tori in Hamiltonian mappings
title_full_unstemmed Application of the Slater criteria to localize invariant tori in Hamiltonian mappings
Application of the Slater criteria to localize invariant tori in Hamiltonian mappings
title_sort Application of the Slater criteria to localize invariant tori in Hamiltonian mappings
author Huggler, Yoná H. [UNESP]
author_facet Huggler, Yoná H. [UNESP]
Huggler, Yoná H. [UNESP]
Hermes, Joelson D. V. [UNESP]
Leonel, Edson D. [UNESP]
Hermes, Joelson D. V. [UNESP]
Leonel, Edson D. [UNESP]
author_role author
author2 Hermes, Joelson D. V. [UNESP]
Leonel, Edson D. [UNESP]
author2_role author
author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (UNESP)
Science and Technology of South of Minas Gerais - Ifsuldeminas
dc.contributor.author.fl_str_mv Huggler, Yoná H. [UNESP]
Hermes, Joelson D. V. [UNESP]
Leonel, Edson D. [UNESP]
description We investigate the localization of invariant spanning curves for a family of two-dimensional area-preserving mappings described by the dynamical variables I and θ by using Slater's criterion. The Slater theorem says there are three different return times for an irrational translation over a circle in a given interval. The returning time, which measures the number of iterations a map needs to return to a given periodic or quasi periodic region, has three responses along an invariant spanning curve. They are related to a continued fraction expansion used in the translation and obey the Fibonacci sequence. The rotation numbers for such curves are related to a noble number, leading to a devil's staircase structure. The behavior of the rotation number as a function of invariant spanning curves located by Slater's criterion resulted in an expression of a power law in which the absolute value of the exponent is equal to the control parameter γ that controls the speed of the divergence of θ in the limit the action I is sufficiently small.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-01
2023-07-29T12:28:56Z
2023-07-29T12:28:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1063/5.0103427
Chaos, v. 32, n. 9, 2022.
1089-7682
1054-1500
http://hdl.handle.net/11449/245997
10.1063/5.0103427
2-s2.0-85139130410
url http://dx.doi.org/10.1063/5.0103427
http://hdl.handle.net/11449/245997
identifier_str_mv Chaos, v. 32, n. 9, 2022.
1089-7682
1054-1500
10.1063/5.0103427
2-s2.0-85139130410
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Chaos
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1822182352378396672
dc.identifier.doi.none.fl_str_mv 10.1063/5.0103427