Dynamics and scaling properties for a one-dimensional impact system with two periodically vibrating walls

Detalhes bibliográficos
Autor(a) principal: Livorati, André L.P. [UNESP]
Data de Publicação: 2017
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UNESP
Texto Completo: http://dx.doi.org/10.1016/j.physleta.2017.04.042
http://hdl.handle.net/11449/169698
Resumo: We investigate the dynamics of a system composed of a particle suffering impacts between two heavy periodically vibrating walls. An original, nonlinear area preserving mapping is obtained. The control parameters of amplitude of perturbation and frequency of oscillation play an important role in the phase space, shaping the portion of chaotic seas, position of invariant curves and the amount of KAM islands. The study of the behavior of the root mean square velocity was made via analytical description and numerical simulations. We proposed scaling arguments to describe its dynamics and our results show remarkably good agreement between the theory and the simulations concerning a scaling invariance with respect to the control parameters. Also, an analysis of the diffusion coefficient confirms the validity of the scaling invariance, giving robustness to our modeling.
id UNSP_a916d375464ea775b6e8ab3b468d6952
oai_identifier_str oai:repositorio.unesp.br:11449/169698
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Dynamics and scaling properties for a one-dimensional impact system with two periodically vibrating wallsDiffusionImpact systemNonlinear mappingScalingWe investigate the dynamics of a system composed of a particle suffering impacts between two heavy periodically vibrating walls. An original, nonlinear area preserving mapping is obtained. The control parameters of amplitude of perturbation and frequency of oscillation play an important role in the phase space, shaping the portion of chaotic seas, position of invariant curves and the amount of KAM islands. The study of the behavior of the root mean square velocity was made via analytical description and numerical simulations. We proposed scaling arguments to describe its dynamics and our results show remarkably good agreement between the theory and the simulations concerning a scaling invariance with respect to the control parameters. Also, an analysis of the diffusion coefficient confirms the validity of the scaling invariance, giving robustness to our modeling.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Departamento de Física UNESP – Univ Estadual Paulista, Av. 24A, 1515 – Bela VistaSchool of Mathematics University of BristolDepartamento de Física UNESP – Univ Estadual Paulista, Av. 24A, 1515 – Bela VistaFAPESP: 2014/25316-3FAPESP: 2015/26699-6Universidade Estadual Paulista (Unesp)University of BristolLivorati, André L.P. [UNESP]2018-12-11T16:47:13Z2018-12-11T16:47:13Z2017-07-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article2214-2221application/pdfhttp://dx.doi.org/10.1016/j.physleta.2017.04.042Physics Letters, Section A: General, Atomic and Solid State Physics, v. 381, n. 28, p. 2214-2221, 2017.0375-9601http://hdl.handle.net/11449/16969810.1016/j.physleta.2017.04.0422-s2.0-850189073132-s2.0-85018907313.pdfScopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengPhysics Letters, Section A: General, Atomic and Solid State Physics0,595info:eu-repo/semantics/openAccess2023-11-02T06:10:50Zoai:repositorio.unesp.br:11449/169698Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestopendoar:29462024-08-05T16:43:51.295475Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Dynamics and scaling properties for a one-dimensional impact system with two periodically vibrating walls
title Dynamics and scaling properties for a one-dimensional impact system with two periodically vibrating walls
spellingShingle Dynamics and scaling properties for a one-dimensional impact system with two periodically vibrating walls
Livorati, André L.P. [UNESP]
Diffusion
Impact system
Nonlinear mapping
Scaling
title_short Dynamics and scaling properties for a one-dimensional impact system with two periodically vibrating walls
title_full Dynamics and scaling properties for a one-dimensional impact system with two periodically vibrating walls
title_fullStr Dynamics and scaling properties for a one-dimensional impact system with two periodically vibrating walls
title_full_unstemmed Dynamics and scaling properties for a one-dimensional impact system with two periodically vibrating walls
title_sort Dynamics and scaling properties for a one-dimensional impact system with two periodically vibrating walls
author Livorati, André L.P. [UNESP]
author_facet Livorati, André L.P. [UNESP]
author_role author
dc.contributor.none.fl_str_mv Universidade Estadual Paulista (Unesp)
University of Bristol
dc.contributor.author.fl_str_mv Livorati, André L.P. [UNESP]
dc.subject.por.fl_str_mv Diffusion
Impact system
Nonlinear mapping
Scaling
topic Diffusion
Impact system
Nonlinear mapping
Scaling
description We investigate the dynamics of a system composed of a particle suffering impacts between two heavy periodically vibrating walls. An original, nonlinear area preserving mapping is obtained. The control parameters of amplitude of perturbation and frequency of oscillation play an important role in the phase space, shaping the portion of chaotic seas, position of invariant curves and the amount of KAM islands. The study of the behavior of the root mean square velocity was made via analytical description and numerical simulations. We proposed scaling arguments to describe its dynamics and our results show remarkably good agreement between the theory and the simulations concerning a scaling invariance with respect to the control parameters. Also, an analysis of the diffusion coefficient confirms the validity of the scaling invariance, giving robustness to our modeling.
publishDate 2017
dc.date.none.fl_str_mv 2017-07-25
2018-12-11T16:47:13Z
2018-12-11T16:47:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1016/j.physleta.2017.04.042
Physics Letters, Section A: General, Atomic and Solid State Physics, v. 381, n. 28, p. 2214-2221, 2017.
0375-9601
http://hdl.handle.net/11449/169698
10.1016/j.physleta.2017.04.042
2-s2.0-85018907313
2-s2.0-85018907313.pdf
url http://dx.doi.org/10.1016/j.physleta.2017.04.042
http://hdl.handle.net/11449/169698
identifier_str_mv Physics Letters, Section A: General, Atomic and Solid State Physics, v. 381, n. 28, p. 2214-2221, 2017.
0375-9601
10.1016/j.physleta.2017.04.042
2-s2.0-85018907313
2-s2.0-85018907313.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Physics Letters, Section A: General, Atomic and Solid State Physics
0,595
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 2214-2221
application/pdf
dc.source.none.fl_str_mv Scopus
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv
_version_ 1808128693512437760